second commit

This commit is contained in:
Александр Геннадьевич Сальный
2022-10-15 21:01:12 +03:00
commit 7caeeaaff5
1329 changed files with 489315 additions and 0 deletions

View File

@@ -0,0 +1,10 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
"""
Hazardous Materials
This is a "Hazardous Materials" module. You should ONLY use it if you're
100% absolutely sure that you know what you're doing because this module
is full of land mines, dragons, and dinosaurs with laser guns.
"""

View File

@@ -0,0 +1,345 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography.hazmat.primitives import hashes
class ObjectIdentifier:
def __init__(self, dotted_string: str) -> None:
self._dotted_string = dotted_string
nodes = self._dotted_string.split(".")
intnodes = []
# There must be at least 2 nodes, the first node must be 0..2, and
# if less than 2, the second node cannot have a value outside the
# range 0..39. All nodes must be integers.
for node in nodes:
try:
node_value = int(node, 10)
except ValueError:
raise ValueError(
f"Malformed OID: {dotted_string} (non-integer nodes)"
)
if node_value < 0:
raise ValueError(
f"Malformed OID: {dotted_string} (negative-integer nodes)"
)
intnodes.append(node_value)
if len(nodes) < 2:
raise ValueError(
f"Malformed OID: {dotted_string} "
"(insufficient number of nodes)"
)
if intnodes[0] > 2:
raise ValueError(
f"Malformed OID: {dotted_string} "
"(first node outside valid range)"
)
if intnodes[0] < 2 and intnodes[1] >= 40:
raise ValueError(
f"Malformed OID: {dotted_string} "
"(second node outside valid range)"
)
def __eq__(self, other: object) -> bool:
if not isinstance(other, ObjectIdentifier):
return NotImplemented
return self.dotted_string == other.dotted_string
def __repr__(self) -> str:
return "<ObjectIdentifier(oid={}, name={})>".format(
self.dotted_string, self._name
)
def __hash__(self) -> int:
return hash(self.dotted_string)
@property
def _name(self) -> str:
return _OID_NAMES.get(self, "Unknown OID")
@property
def dotted_string(self) -> str:
return self._dotted_string
class ExtensionOID:
SUBJECT_DIRECTORY_ATTRIBUTES = ObjectIdentifier("2.5.29.9")
SUBJECT_KEY_IDENTIFIER = ObjectIdentifier("2.5.29.14")
KEY_USAGE = ObjectIdentifier("2.5.29.15")
SUBJECT_ALTERNATIVE_NAME = ObjectIdentifier("2.5.29.17")
ISSUER_ALTERNATIVE_NAME = ObjectIdentifier("2.5.29.18")
BASIC_CONSTRAINTS = ObjectIdentifier("2.5.29.19")
NAME_CONSTRAINTS = ObjectIdentifier("2.5.29.30")
CRL_DISTRIBUTION_POINTS = ObjectIdentifier("2.5.29.31")
CERTIFICATE_POLICIES = ObjectIdentifier("2.5.29.32")
POLICY_MAPPINGS = ObjectIdentifier("2.5.29.33")
AUTHORITY_KEY_IDENTIFIER = ObjectIdentifier("2.5.29.35")
POLICY_CONSTRAINTS = ObjectIdentifier("2.5.29.36")
EXTENDED_KEY_USAGE = ObjectIdentifier("2.5.29.37")
FRESHEST_CRL = ObjectIdentifier("2.5.29.46")
INHIBIT_ANY_POLICY = ObjectIdentifier("2.5.29.54")
ISSUING_DISTRIBUTION_POINT = ObjectIdentifier("2.5.29.28")
AUTHORITY_INFORMATION_ACCESS = ObjectIdentifier("1.3.6.1.5.5.7.1.1")
SUBJECT_INFORMATION_ACCESS = ObjectIdentifier("1.3.6.1.5.5.7.1.11")
OCSP_NO_CHECK = ObjectIdentifier("1.3.6.1.5.5.7.48.1.5")
TLS_FEATURE = ObjectIdentifier("1.3.6.1.5.5.7.1.24")
CRL_NUMBER = ObjectIdentifier("2.5.29.20")
DELTA_CRL_INDICATOR = ObjectIdentifier("2.5.29.27")
PRECERT_SIGNED_CERTIFICATE_TIMESTAMPS = ObjectIdentifier(
"1.3.6.1.4.1.11129.2.4.2"
)
PRECERT_POISON = ObjectIdentifier("1.3.6.1.4.1.11129.2.4.3")
SIGNED_CERTIFICATE_TIMESTAMPS = ObjectIdentifier("1.3.6.1.4.1.11129.2.4.5")
class OCSPExtensionOID:
NONCE = ObjectIdentifier("1.3.6.1.5.5.7.48.1.2")
class CRLEntryExtensionOID:
CERTIFICATE_ISSUER = ObjectIdentifier("2.5.29.29")
CRL_REASON = ObjectIdentifier("2.5.29.21")
INVALIDITY_DATE = ObjectIdentifier("2.5.29.24")
class NameOID:
COMMON_NAME = ObjectIdentifier("2.5.4.3")
COUNTRY_NAME = ObjectIdentifier("2.5.4.6")
LOCALITY_NAME = ObjectIdentifier("2.5.4.7")
STATE_OR_PROVINCE_NAME = ObjectIdentifier("2.5.4.8")
STREET_ADDRESS = ObjectIdentifier("2.5.4.9")
ORGANIZATION_NAME = ObjectIdentifier("2.5.4.10")
ORGANIZATIONAL_UNIT_NAME = ObjectIdentifier("2.5.4.11")
SERIAL_NUMBER = ObjectIdentifier("2.5.4.5")
SURNAME = ObjectIdentifier("2.5.4.4")
GIVEN_NAME = ObjectIdentifier("2.5.4.42")
TITLE = ObjectIdentifier("2.5.4.12")
GENERATION_QUALIFIER = ObjectIdentifier("2.5.4.44")
X500_UNIQUE_IDENTIFIER = ObjectIdentifier("2.5.4.45")
DN_QUALIFIER = ObjectIdentifier("2.5.4.46")
PSEUDONYM = ObjectIdentifier("2.5.4.65")
USER_ID = ObjectIdentifier("0.9.2342.19200300.100.1.1")
DOMAIN_COMPONENT = ObjectIdentifier("0.9.2342.19200300.100.1.25")
EMAIL_ADDRESS = ObjectIdentifier("1.2.840.113549.1.9.1")
JURISDICTION_COUNTRY_NAME = ObjectIdentifier("1.3.6.1.4.1.311.60.2.1.3")
JURISDICTION_LOCALITY_NAME = ObjectIdentifier("1.3.6.1.4.1.311.60.2.1.1")
JURISDICTION_STATE_OR_PROVINCE_NAME = ObjectIdentifier(
"1.3.6.1.4.1.311.60.2.1.2"
)
BUSINESS_CATEGORY = ObjectIdentifier("2.5.4.15")
POSTAL_ADDRESS = ObjectIdentifier("2.5.4.16")
POSTAL_CODE = ObjectIdentifier("2.5.4.17")
INN = ObjectIdentifier("1.2.643.3.131.1.1")
OGRN = ObjectIdentifier("1.2.643.100.1")
SNILS = ObjectIdentifier("1.2.643.100.3")
UNSTRUCTURED_NAME = ObjectIdentifier("1.2.840.113549.1.9.2")
class SignatureAlgorithmOID:
RSA_WITH_MD5 = ObjectIdentifier("1.2.840.113549.1.1.4")
RSA_WITH_SHA1 = ObjectIdentifier("1.2.840.113549.1.1.5")
# This is an alternate OID for RSA with SHA1 that is occasionally seen
_RSA_WITH_SHA1 = ObjectIdentifier("1.3.14.3.2.29")
RSA_WITH_SHA224 = ObjectIdentifier("1.2.840.113549.1.1.14")
RSA_WITH_SHA256 = ObjectIdentifier("1.2.840.113549.1.1.11")
RSA_WITH_SHA384 = ObjectIdentifier("1.2.840.113549.1.1.12")
RSA_WITH_SHA512 = ObjectIdentifier("1.2.840.113549.1.1.13")
RSA_WITH_SHA3_224 = ObjectIdentifier("2.16.840.1.101.3.4.3.13")
RSA_WITH_SHA3_256 = ObjectIdentifier("2.16.840.1.101.3.4.3.14")
RSA_WITH_SHA3_384 = ObjectIdentifier("2.16.840.1.101.3.4.3.15")
RSA_WITH_SHA3_512 = ObjectIdentifier("2.16.840.1.101.3.4.3.16")
RSASSA_PSS = ObjectIdentifier("1.2.840.113549.1.1.10")
ECDSA_WITH_SHA1 = ObjectIdentifier("1.2.840.10045.4.1")
ECDSA_WITH_SHA224 = ObjectIdentifier("1.2.840.10045.4.3.1")
ECDSA_WITH_SHA256 = ObjectIdentifier("1.2.840.10045.4.3.2")
ECDSA_WITH_SHA384 = ObjectIdentifier("1.2.840.10045.4.3.3")
ECDSA_WITH_SHA512 = ObjectIdentifier("1.2.840.10045.4.3.4")
ECDSA_WITH_SHA3_224 = ObjectIdentifier("2.16.840.1.101.3.4.3.9")
ECDSA_WITH_SHA3_256 = ObjectIdentifier("2.16.840.1.101.3.4.3.10")
ECDSA_WITH_SHA3_384 = ObjectIdentifier("2.16.840.1.101.3.4.3.11")
ECDSA_WITH_SHA3_512 = ObjectIdentifier("2.16.840.1.101.3.4.3.12")
DSA_WITH_SHA1 = ObjectIdentifier("1.2.840.10040.4.3")
DSA_WITH_SHA224 = ObjectIdentifier("2.16.840.1.101.3.4.3.1")
DSA_WITH_SHA256 = ObjectIdentifier("2.16.840.1.101.3.4.3.2")
DSA_WITH_SHA384 = ObjectIdentifier("2.16.840.1.101.3.4.3.3")
DSA_WITH_SHA512 = ObjectIdentifier("2.16.840.1.101.3.4.3.4")
ED25519 = ObjectIdentifier("1.3.101.112")
ED448 = ObjectIdentifier("1.3.101.113")
GOSTR3411_94_WITH_3410_2001 = ObjectIdentifier("1.2.643.2.2.3")
GOSTR3410_2012_WITH_3411_2012_256 = ObjectIdentifier("1.2.643.7.1.1.3.2")
GOSTR3410_2012_WITH_3411_2012_512 = ObjectIdentifier("1.2.643.7.1.1.3.3")
_SIG_OIDS_TO_HASH: typing.Dict[
ObjectIdentifier, typing.Optional[hashes.HashAlgorithm]
] = {
SignatureAlgorithmOID.RSA_WITH_MD5: hashes.MD5(),
SignatureAlgorithmOID.RSA_WITH_SHA1: hashes.SHA1(),
SignatureAlgorithmOID._RSA_WITH_SHA1: hashes.SHA1(),
SignatureAlgorithmOID.RSA_WITH_SHA224: hashes.SHA224(),
SignatureAlgorithmOID.RSA_WITH_SHA256: hashes.SHA256(),
SignatureAlgorithmOID.RSA_WITH_SHA384: hashes.SHA384(),
SignatureAlgorithmOID.RSA_WITH_SHA512: hashes.SHA512(),
SignatureAlgorithmOID.ECDSA_WITH_SHA1: hashes.SHA1(),
SignatureAlgorithmOID.ECDSA_WITH_SHA224: hashes.SHA224(),
SignatureAlgorithmOID.ECDSA_WITH_SHA256: hashes.SHA256(),
SignatureAlgorithmOID.ECDSA_WITH_SHA384: hashes.SHA384(),
SignatureAlgorithmOID.ECDSA_WITH_SHA512: hashes.SHA512(),
SignatureAlgorithmOID.DSA_WITH_SHA1: hashes.SHA1(),
SignatureAlgorithmOID.DSA_WITH_SHA224: hashes.SHA224(),
SignatureAlgorithmOID.DSA_WITH_SHA256: hashes.SHA256(),
SignatureAlgorithmOID.ED25519: None,
SignatureAlgorithmOID.ED448: None,
SignatureAlgorithmOID.GOSTR3411_94_WITH_3410_2001: None,
SignatureAlgorithmOID.GOSTR3410_2012_WITH_3411_2012_256: None,
SignatureAlgorithmOID.GOSTR3410_2012_WITH_3411_2012_512: None,
}
class ExtendedKeyUsageOID:
SERVER_AUTH = ObjectIdentifier("1.3.6.1.5.5.7.3.1")
CLIENT_AUTH = ObjectIdentifier("1.3.6.1.5.5.7.3.2")
CODE_SIGNING = ObjectIdentifier("1.3.6.1.5.5.7.3.3")
EMAIL_PROTECTION = ObjectIdentifier("1.3.6.1.5.5.7.3.4")
TIME_STAMPING = ObjectIdentifier("1.3.6.1.5.5.7.3.8")
OCSP_SIGNING = ObjectIdentifier("1.3.6.1.5.5.7.3.9")
ANY_EXTENDED_KEY_USAGE = ObjectIdentifier("2.5.29.37.0")
SMARTCARD_LOGON = ObjectIdentifier("1.3.6.1.4.1.311.20.2.2")
KERBEROS_PKINIT_KDC = ObjectIdentifier("1.3.6.1.5.2.3.5")
IPSEC_IKE = ObjectIdentifier("1.3.6.1.5.5.7.3.17")
class AuthorityInformationAccessOID:
CA_ISSUERS = ObjectIdentifier("1.3.6.1.5.5.7.48.2")
OCSP = ObjectIdentifier("1.3.6.1.5.5.7.48.1")
class SubjectInformationAccessOID:
CA_REPOSITORY = ObjectIdentifier("1.3.6.1.5.5.7.48.5")
class CertificatePoliciesOID:
CPS_QUALIFIER = ObjectIdentifier("1.3.6.1.5.5.7.2.1")
CPS_USER_NOTICE = ObjectIdentifier("1.3.6.1.5.5.7.2.2")
ANY_POLICY = ObjectIdentifier("2.5.29.32.0")
class AttributeOID:
CHALLENGE_PASSWORD = ObjectIdentifier("1.2.840.113549.1.9.7")
UNSTRUCTURED_NAME = ObjectIdentifier("1.2.840.113549.1.9.2")
_OID_NAMES = {
NameOID.COMMON_NAME: "commonName",
NameOID.COUNTRY_NAME: "countryName",
NameOID.LOCALITY_NAME: "localityName",
NameOID.STATE_OR_PROVINCE_NAME: "stateOrProvinceName",
NameOID.STREET_ADDRESS: "streetAddress",
NameOID.ORGANIZATION_NAME: "organizationName",
NameOID.ORGANIZATIONAL_UNIT_NAME: "organizationalUnitName",
NameOID.SERIAL_NUMBER: "serialNumber",
NameOID.SURNAME: "surname",
NameOID.GIVEN_NAME: "givenName",
NameOID.TITLE: "title",
NameOID.GENERATION_QUALIFIER: "generationQualifier",
NameOID.X500_UNIQUE_IDENTIFIER: "x500UniqueIdentifier",
NameOID.DN_QUALIFIER: "dnQualifier",
NameOID.PSEUDONYM: "pseudonym",
NameOID.USER_ID: "userID",
NameOID.DOMAIN_COMPONENT: "domainComponent",
NameOID.EMAIL_ADDRESS: "emailAddress",
NameOID.JURISDICTION_COUNTRY_NAME: "jurisdictionCountryName",
NameOID.JURISDICTION_LOCALITY_NAME: "jurisdictionLocalityName",
NameOID.JURISDICTION_STATE_OR_PROVINCE_NAME: (
"jurisdictionStateOrProvinceName"
),
NameOID.BUSINESS_CATEGORY: "businessCategory",
NameOID.POSTAL_ADDRESS: "postalAddress",
NameOID.POSTAL_CODE: "postalCode",
NameOID.INN: "INN",
NameOID.OGRN: "OGRN",
NameOID.SNILS: "SNILS",
NameOID.UNSTRUCTURED_NAME: "unstructuredName",
SignatureAlgorithmOID.RSA_WITH_MD5: "md5WithRSAEncryption",
SignatureAlgorithmOID.RSA_WITH_SHA1: "sha1WithRSAEncryption",
SignatureAlgorithmOID.RSA_WITH_SHA224: "sha224WithRSAEncryption",
SignatureAlgorithmOID.RSA_WITH_SHA256: "sha256WithRSAEncryption",
SignatureAlgorithmOID.RSA_WITH_SHA384: "sha384WithRSAEncryption",
SignatureAlgorithmOID.RSA_WITH_SHA512: "sha512WithRSAEncryption",
SignatureAlgorithmOID.RSASSA_PSS: "RSASSA-PSS",
SignatureAlgorithmOID.ECDSA_WITH_SHA1: "ecdsa-with-SHA1",
SignatureAlgorithmOID.ECDSA_WITH_SHA224: "ecdsa-with-SHA224",
SignatureAlgorithmOID.ECDSA_WITH_SHA256: "ecdsa-with-SHA256",
SignatureAlgorithmOID.ECDSA_WITH_SHA384: "ecdsa-with-SHA384",
SignatureAlgorithmOID.ECDSA_WITH_SHA512: "ecdsa-with-SHA512",
SignatureAlgorithmOID.DSA_WITH_SHA1: "dsa-with-sha1",
SignatureAlgorithmOID.DSA_WITH_SHA224: "dsa-with-sha224",
SignatureAlgorithmOID.DSA_WITH_SHA256: "dsa-with-sha256",
SignatureAlgorithmOID.ED25519: "ed25519",
SignatureAlgorithmOID.ED448: "ed448",
SignatureAlgorithmOID.GOSTR3411_94_WITH_3410_2001: (
"GOST R 34.11-94 with GOST R 34.10-2001"
),
SignatureAlgorithmOID.GOSTR3410_2012_WITH_3411_2012_256: (
"GOST R 34.10-2012 with GOST R 34.11-2012 (256 bit)"
),
SignatureAlgorithmOID.GOSTR3410_2012_WITH_3411_2012_512: (
"GOST R 34.10-2012 with GOST R 34.11-2012 (512 bit)"
),
ExtendedKeyUsageOID.SERVER_AUTH: "serverAuth",
ExtendedKeyUsageOID.CLIENT_AUTH: "clientAuth",
ExtendedKeyUsageOID.CODE_SIGNING: "codeSigning",
ExtendedKeyUsageOID.EMAIL_PROTECTION: "emailProtection",
ExtendedKeyUsageOID.TIME_STAMPING: "timeStamping",
ExtendedKeyUsageOID.OCSP_SIGNING: "OCSPSigning",
ExtendedKeyUsageOID.SMARTCARD_LOGON: "msSmartcardLogin",
ExtendedKeyUsageOID.KERBEROS_PKINIT_KDC: "pkInitKDC",
ExtensionOID.SUBJECT_DIRECTORY_ATTRIBUTES: "subjectDirectoryAttributes",
ExtensionOID.SUBJECT_KEY_IDENTIFIER: "subjectKeyIdentifier",
ExtensionOID.KEY_USAGE: "keyUsage",
ExtensionOID.SUBJECT_ALTERNATIVE_NAME: "subjectAltName",
ExtensionOID.ISSUER_ALTERNATIVE_NAME: "issuerAltName",
ExtensionOID.BASIC_CONSTRAINTS: "basicConstraints",
ExtensionOID.PRECERT_SIGNED_CERTIFICATE_TIMESTAMPS: (
"signedCertificateTimestampList"
),
ExtensionOID.SIGNED_CERTIFICATE_TIMESTAMPS: (
"signedCertificateTimestampList"
),
ExtensionOID.PRECERT_POISON: "ctPoison",
CRLEntryExtensionOID.CRL_REASON: "cRLReason",
CRLEntryExtensionOID.INVALIDITY_DATE: "invalidityDate",
CRLEntryExtensionOID.CERTIFICATE_ISSUER: "certificateIssuer",
ExtensionOID.NAME_CONSTRAINTS: "nameConstraints",
ExtensionOID.CRL_DISTRIBUTION_POINTS: "cRLDistributionPoints",
ExtensionOID.CERTIFICATE_POLICIES: "certificatePolicies",
ExtensionOID.POLICY_MAPPINGS: "policyMappings",
ExtensionOID.AUTHORITY_KEY_IDENTIFIER: "authorityKeyIdentifier",
ExtensionOID.POLICY_CONSTRAINTS: "policyConstraints",
ExtensionOID.EXTENDED_KEY_USAGE: "extendedKeyUsage",
ExtensionOID.FRESHEST_CRL: "freshestCRL",
ExtensionOID.INHIBIT_ANY_POLICY: "inhibitAnyPolicy",
ExtensionOID.ISSUING_DISTRIBUTION_POINT: ("issuingDistributionPoint"),
ExtensionOID.AUTHORITY_INFORMATION_ACCESS: "authorityInfoAccess",
ExtensionOID.SUBJECT_INFORMATION_ACCESS: "subjectInfoAccess",
ExtensionOID.OCSP_NO_CHECK: "OCSPNoCheck",
ExtensionOID.CRL_NUMBER: "cRLNumber",
ExtensionOID.DELTA_CRL_INDICATOR: "deltaCRLIndicator",
ExtensionOID.TLS_FEATURE: "TLSFeature",
AuthorityInformationAccessOID.OCSP: "OCSP",
AuthorityInformationAccessOID.CA_ISSUERS: "caIssuers",
SubjectInformationAccessOID.CA_REPOSITORY: "caRepository",
CertificatePoliciesOID.CPS_QUALIFIER: "id-qt-cps",
CertificatePoliciesOID.CPS_USER_NOTICE: "id-qt-unotice",
OCSPExtensionOID.NONCE: "OCSPNonce",
AttributeOID.CHALLENGE_PASSWORD: "challengePassword",
}

View File

@@ -0,0 +1,10 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from typing import Any
def default_backend() -> Any:
from cryptography.hazmat.backends.openssl.backend import backend
return backend

View File

@@ -0,0 +1,9 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from cryptography.hazmat.backends.openssl.backend import backend
__all__ = ["backend"]

View File

@@ -0,0 +1,251 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography.exceptions import InvalidTag
if typing.TYPE_CHECKING:
from cryptography.hazmat.backends.openssl.backend import Backend
from cryptography.hazmat.primitives.ciphers.aead import (
AESCCM,
AESGCM,
AESOCB3,
AESSIV,
ChaCha20Poly1305,
)
_AEAD_TYPES = typing.Union[
AESCCM, AESGCM, AESOCB3, AESSIV, ChaCha20Poly1305
]
_ENCRYPT = 1
_DECRYPT = 0
def _aead_cipher_name(cipher: "_AEAD_TYPES") -> bytes:
from cryptography.hazmat.primitives.ciphers.aead import (
AESCCM,
AESGCM,
AESOCB3,
AESSIV,
ChaCha20Poly1305,
)
if isinstance(cipher, ChaCha20Poly1305):
return b"chacha20-poly1305"
elif isinstance(cipher, AESCCM):
return f"aes-{len(cipher._key) * 8}-ccm".encode("ascii")
elif isinstance(cipher, AESOCB3):
return f"aes-{len(cipher._key) * 8}-ocb".encode("ascii")
elif isinstance(cipher, AESSIV):
return f"aes-{len(cipher._key) * 8 // 2}-siv".encode("ascii")
else:
assert isinstance(cipher, AESGCM)
return f"aes-{len(cipher._key) * 8}-gcm".encode("ascii")
def _evp_cipher(cipher_name: bytes, backend: "Backend"):
if cipher_name.endswith(b"-siv"):
evp_cipher = backend._lib.EVP_CIPHER_fetch(
backend._ffi.NULL,
cipher_name,
backend._ffi.NULL,
)
backend.openssl_assert(evp_cipher != backend._ffi.NULL)
evp_cipher = backend._ffi.gc(evp_cipher, backend._lib.EVP_CIPHER_free)
else:
evp_cipher = backend._lib.EVP_get_cipherbyname(cipher_name)
backend.openssl_assert(evp_cipher != backend._ffi.NULL)
return evp_cipher
def _aead_setup(
backend: "Backend",
cipher_name: bytes,
key: bytes,
nonce: bytes,
tag: typing.Optional[bytes],
tag_len: int,
operation: int,
):
evp_cipher = _evp_cipher(cipher_name, backend)
ctx = backend._lib.EVP_CIPHER_CTX_new()
ctx = backend._ffi.gc(ctx, backend._lib.EVP_CIPHER_CTX_free)
res = backend._lib.EVP_CipherInit_ex(
ctx,
evp_cipher,
backend._ffi.NULL,
backend._ffi.NULL,
backend._ffi.NULL,
int(operation == _ENCRYPT),
)
backend.openssl_assert(res != 0)
res = backend._lib.EVP_CIPHER_CTX_set_key_length(ctx, len(key))
backend.openssl_assert(res != 0)
res = backend._lib.EVP_CIPHER_CTX_ctrl(
ctx,
backend._lib.EVP_CTRL_AEAD_SET_IVLEN,
len(nonce),
backend._ffi.NULL,
)
backend.openssl_assert(res != 0)
if operation == _DECRYPT:
assert tag is not None
res = backend._lib.EVP_CIPHER_CTX_ctrl(
ctx, backend._lib.EVP_CTRL_AEAD_SET_TAG, len(tag), tag
)
backend.openssl_assert(res != 0)
elif cipher_name.endswith(b"-ccm"):
res = backend._lib.EVP_CIPHER_CTX_ctrl(
ctx, backend._lib.EVP_CTRL_AEAD_SET_TAG, tag_len, backend._ffi.NULL
)
backend.openssl_assert(res != 0)
nonce_ptr = backend._ffi.from_buffer(nonce)
key_ptr = backend._ffi.from_buffer(key)
res = backend._lib.EVP_CipherInit_ex(
ctx,
backend._ffi.NULL,
backend._ffi.NULL,
key_ptr,
nonce_ptr,
int(operation == _ENCRYPT),
)
backend.openssl_assert(res != 0)
return ctx
def _set_length(backend: "Backend", ctx, data_len: int) -> None:
intptr = backend._ffi.new("int *")
res = backend._lib.EVP_CipherUpdate(
ctx, backend._ffi.NULL, intptr, backend._ffi.NULL, data_len
)
backend.openssl_assert(res != 0)
def _process_aad(backend: "Backend", ctx, associated_data: bytes) -> None:
outlen = backend._ffi.new("int *")
res = backend._lib.EVP_CipherUpdate(
ctx, backend._ffi.NULL, outlen, associated_data, len(associated_data)
)
backend.openssl_assert(res != 0)
def _process_data(backend: "Backend", ctx, data: bytes) -> bytes:
outlen = backend._ffi.new("int *")
buf = backend._ffi.new("unsigned char[]", len(data))
res = backend._lib.EVP_CipherUpdate(ctx, buf, outlen, data, len(data))
if res == 0:
# AES SIV can error here if the data is invalid on decrypt
backend._consume_errors()
raise InvalidTag
return backend._ffi.buffer(buf, outlen[0])[:]
def _encrypt(
backend: "Backend",
cipher: "_AEAD_TYPES",
nonce: bytes,
data: bytes,
associated_data: typing.List[bytes],
tag_length: int,
) -> bytes:
from cryptography.hazmat.primitives.ciphers.aead import AESCCM, AESSIV
cipher_name = _aead_cipher_name(cipher)
ctx = _aead_setup(
backend, cipher_name, cipher._key, nonce, None, tag_length, _ENCRYPT
)
# CCM requires us to pass the length of the data before processing anything
# However calling this with any other AEAD results in an error
if isinstance(cipher, AESCCM):
_set_length(backend, ctx, len(data))
for ad in associated_data:
_process_aad(backend, ctx, ad)
processed_data = _process_data(backend, ctx, data)
outlen = backend._ffi.new("int *")
# All AEADs we support besides OCB are streaming so they return nothing
# in finalization. OCB can return up to (16 byte block - 1) bytes so
# we need a buffer here too.
buf = backend._ffi.new("unsigned char[]", 16)
res = backend._lib.EVP_CipherFinal_ex(ctx, buf, outlen)
backend.openssl_assert(res != 0)
processed_data += backend._ffi.buffer(buf, outlen[0])[:]
tag_buf = backend._ffi.new("unsigned char[]", tag_length)
res = backend._lib.EVP_CIPHER_CTX_ctrl(
ctx, backend._lib.EVP_CTRL_AEAD_GET_TAG, tag_length, tag_buf
)
backend.openssl_assert(res != 0)
tag = backend._ffi.buffer(tag_buf)[:]
if isinstance(cipher, AESSIV):
# RFC 5297 defines the output as IV || C, where the tag we generate is
# the "IV" and C is the ciphertext. This is the opposite of our
# other AEADs, which are Ciphertext || Tag
backend.openssl_assert(len(tag) == 16)
return tag + processed_data
else:
return processed_data + tag
def _decrypt(
backend: "Backend",
cipher: "_AEAD_TYPES",
nonce: bytes,
data: bytes,
associated_data: typing.List[bytes],
tag_length: int,
) -> bytes:
from cryptography.hazmat.primitives.ciphers.aead import AESCCM, AESSIV
if len(data) < tag_length:
raise InvalidTag
if isinstance(cipher, AESSIV):
# RFC 5297 defines the output as IV || C, where the tag we generate is
# the "IV" and C is the ciphertext. This is the opposite of our
# other AEADs, which are Ciphertext || Tag
tag = data[:tag_length]
data = data[tag_length:]
else:
tag = data[-tag_length:]
data = data[:-tag_length]
cipher_name = _aead_cipher_name(cipher)
ctx = _aead_setup(
backend, cipher_name, cipher._key, nonce, tag, tag_length, _DECRYPT
)
# CCM requires us to pass the length of the data before processing anything
# However calling this with any other AEAD results in an error
if isinstance(cipher, AESCCM):
_set_length(backend, ctx, len(data))
for ad in associated_data:
_process_aad(backend, ctx, ad)
# CCM has a different error path if the tag doesn't match. Errors are
# raised in Update and Final is irrelevant.
if isinstance(cipher, AESCCM):
outlen = backend._ffi.new("int *")
buf = backend._ffi.new("unsigned char[]", len(data))
res = backend._lib.EVP_CipherUpdate(ctx, buf, outlen, data, len(data))
if res != 1:
backend._consume_errors()
raise InvalidTag
processed_data = backend._ffi.buffer(buf, outlen[0])[:]
else:
processed_data = _process_data(backend, ctx, data)
outlen = backend._ffi.new("int *")
# OCB can return up to 15 bytes (16 byte block - 1) in finalization
buf = backend._ffi.new("unsigned char[]", 16)
res = backend._lib.EVP_CipherFinal_ex(ctx, buf, outlen)
processed_data += backend._ffi.buffer(buf, outlen[0])[:]
if res == 0:
backend._consume_errors()
raise InvalidTag
return processed_data

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,282 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography.exceptions import InvalidTag, UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import ciphers
from cryptography.hazmat.primitives.ciphers import algorithms, modes
if typing.TYPE_CHECKING:
from cryptography.hazmat.backends.openssl.backend import Backend
class _CipherContext:
_ENCRYPT = 1
_DECRYPT = 0
_MAX_CHUNK_SIZE = 2**30 - 1
def __init__(
self, backend: "Backend", cipher, mode, operation: int
) -> None:
self._backend = backend
self._cipher = cipher
self._mode = mode
self._operation = operation
self._tag: typing.Optional[bytes] = None
if isinstance(self._cipher, ciphers.BlockCipherAlgorithm):
self._block_size_bytes = self._cipher.block_size // 8
else:
self._block_size_bytes = 1
ctx = self._backend._lib.EVP_CIPHER_CTX_new()
ctx = self._backend._ffi.gc(
ctx, self._backend._lib.EVP_CIPHER_CTX_free
)
registry = self._backend._cipher_registry
try:
adapter = registry[type(cipher), type(mode)]
except KeyError:
raise UnsupportedAlgorithm(
"cipher {} in {} mode is not supported "
"by this backend.".format(
cipher.name, mode.name if mode else mode
),
_Reasons.UNSUPPORTED_CIPHER,
)
evp_cipher = adapter(self._backend, cipher, mode)
if evp_cipher == self._backend._ffi.NULL:
msg = "cipher {0.name} ".format(cipher)
if mode is not None:
msg += "in {0.name} mode ".format(mode)
msg += (
"is not supported by this backend (Your version of OpenSSL "
"may be too old. Current version: {}.)"
).format(self._backend.openssl_version_text())
raise UnsupportedAlgorithm(msg, _Reasons.UNSUPPORTED_CIPHER)
if isinstance(mode, modes.ModeWithInitializationVector):
iv_nonce = self._backend._ffi.from_buffer(
mode.initialization_vector
)
elif isinstance(mode, modes.ModeWithTweak):
iv_nonce = self._backend._ffi.from_buffer(mode.tweak)
elif isinstance(mode, modes.ModeWithNonce):
iv_nonce = self._backend._ffi.from_buffer(mode.nonce)
elif isinstance(cipher, algorithms.ChaCha20):
iv_nonce = self._backend._ffi.from_buffer(cipher.nonce)
else:
iv_nonce = self._backend._ffi.NULL
# begin init with cipher and operation type
res = self._backend._lib.EVP_CipherInit_ex(
ctx,
evp_cipher,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
operation,
)
self._backend.openssl_assert(res != 0)
# set the key length to handle variable key ciphers
res = self._backend._lib.EVP_CIPHER_CTX_set_key_length(
ctx, len(cipher.key)
)
self._backend.openssl_assert(res != 0)
if isinstance(mode, modes.GCM):
res = self._backend._lib.EVP_CIPHER_CTX_ctrl(
ctx,
self._backend._lib.EVP_CTRL_AEAD_SET_IVLEN,
len(iv_nonce),
self._backend._ffi.NULL,
)
self._backend.openssl_assert(res != 0)
if mode.tag is not None:
res = self._backend._lib.EVP_CIPHER_CTX_ctrl(
ctx,
self._backend._lib.EVP_CTRL_AEAD_SET_TAG,
len(mode.tag),
mode.tag,
)
self._backend.openssl_assert(res != 0)
self._tag = mode.tag
# pass key/iv
res = self._backend._lib.EVP_CipherInit_ex(
ctx,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
self._backend._ffi.from_buffer(cipher.key),
iv_nonce,
operation,
)
# Check for XTS mode duplicate keys error
errors = self._backend._consume_errors()
lib = self._backend._lib
if res == 0 and (
(
lib.CRYPTOGRAPHY_OPENSSL_111D_OR_GREATER
and errors[0]._lib_reason_match(
lib.ERR_LIB_EVP, lib.EVP_R_XTS_DUPLICATED_KEYS
)
)
or (
lib.Cryptography_HAS_PROVIDERS
and errors[0]._lib_reason_match(
lib.ERR_LIB_PROV, lib.PROV_R_XTS_DUPLICATED_KEYS
)
)
):
raise ValueError("In XTS mode duplicated keys are not allowed")
self._backend.openssl_assert(res != 0, errors=errors)
# We purposely disable padding here as it's handled higher up in the
# API.
self._backend._lib.EVP_CIPHER_CTX_set_padding(ctx, 0)
self._ctx = ctx
def update(self, data: bytes) -> bytes:
buf = bytearray(len(data) + self._block_size_bytes - 1)
n = self.update_into(data, buf)
return bytes(buf[:n])
def update_into(self, data: bytes, buf: bytes) -> int:
total_data_len = len(data)
if len(buf) < (total_data_len + self._block_size_bytes - 1):
raise ValueError(
"buffer must be at least {} bytes for this "
"payload".format(len(data) + self._block_size_bytes - 1)
)
data_processed = 0
total_out = 0
outlen = self._backend._ffi.new("int *")
baseoutbuf = self._backend._ffi.from_buffer(buf)
baseinbuf = self._backend._ffi.from_buffer(data)
while data_processed != total_data_len:
outbuf = baseoutbuf + total_out
inbuf = baseinbuf + data_processed
inlen = min(self._MAX_CHUNK_SIZE, total_data_len - data_processed)
res = self._backend._lib.EVP_CipherUpdate(
self._ctx, outbuf, outlen, inbuf, inlen
)
if res == 0 and isinstance(self._mode, modes.XTS):
self._backend._consume_errors()
raise ValueError(
"In XTS mode you must supply at least a full block in the "
"first update call. For AES this is 16 bytes."
)
else:
self._backend.openssl_assert(res != 0)
data_processed += inlen
total_out += outlen[0]
return total_out
def finalize(self) -> bytes:
if (
self._operation == self._DECRYPT
and isinstance(self._mode, modes.ModeWithAuthenticationTag)
and self.tag is None
):
raise ValueError(
"Authentication tag must be provided when decrypting."
)
buf = self._backend._ffi.new("unsigned char[]", self._block_size_bytes)
outlen = self._backend._ffi.new("int *")
res = self._backend._lib.EVP_CipherFinal_ex(self._ctx, buf, outlen)
if res == 0:
errors = self._backend._consume_errors()
if not errors and isinstance(self._mode, modes.GCM):
raise InvalidTag
lib = self._backend._lib
self._backend.openssl_assert(
errors[0]._lib_reason_match(
lib.ERR_LIB_EVP,
lib.EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH,
)
or (
lib.Cryptography_HAS_PROVIDERS
and errors[0]._lib_reason_match(
lib.ERR_LIB_PROV,
lib.PROV_R_WRONG_FINAL_BLOCK_LENGTH,
)
)
or (
lib.CRYPTOGRAPHY_IS_BORINGSSL
and errors[0].reason
== lib.CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH
),
errors=errors,
)
raise ValueError(
"The length of the provided data is not a multiple of "
"the block length."
)
if (
isinstance(self._mode, modes.GCM)
and self._operation == self._ENCRYPT
):
tag_buf = self._backend._ffi.new(
"unsigned char[]", self._block_size_bytes
)
res = self._backend._lib.EVP_CIPHER_CTX_ctrl(
self._ctx,
self._backend._lib.EVP_CTRL_AEAD_GET_TAG,
self._block_size_bytes,
tag_buf,
)
self._backend.openssl_assert(res != 0)
self._tag = self._backend._ffi.buffer(tag_buf)[:]
res = self._backend._lib.EVP_CIPHER_CTX_reset(self._ctx)
self._backend.openssl_assert(res == 1)
return self._backend._ffi.buffer(buf)[: outlen[0]]
def finalize_with_tag(self, tag: bytes) -> bytes:
tag_len = len(tag)
if tag_len < self._mode._min_tag_length:
raise ValueError(
"Authentication tag must be {} bytes or longer.".format(
self._mode._min_tag_length
)
)
elif tag_len > self._block_size_bytes:
raise ValueError(
"Authentication tag cannot be more than {} bytes.".format(
self._block_size_bytes
)
)
res = self._backend._lib.EVP_CIPHER_CTX_ctrl(
self._ctx, self._backend._lib.EVP_CTRL_AEAD_SET_TAG, len(tag), tag
)
self._backend.openssl_assert(res != 0)
self._tag = tag
return self.finalize()
def authenticate_additional_data(self, data: bytes) -> None:
outlen = self._backend._ffi.new("int *")
res = self._backend._lib.EVP_CipherUpdate(
self._ctx,
self._backend._ffi.NULL,
outlen,
self._backend._ffi.from_buffer(data),
len(data),
)
self._backend.openssl_assert(res != 0)
@property
def tag(self) -> typing.Optional[bytes]:
return self._tag

View File

@@ -0,0 +1,87 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography.exceptions import (
InvalidSignature,
UnsupportedAlgorithm,
_Reasons,
)
from cryptography.hazmat.primitives import constant_time
from cryptography.hazmat.primitives.ciphers.modes import CBC
if typing.TYPE_CHECKING:
from cryptography.hazmat.primitives import ciphers
from cryptography.hazmat.backends.openssl.backend import Backend
class _CMACContext:
def __init__(
self,
backend: "Backend",
algorithm: "ciphers.BlockCipherAlgorithm",
ctx=None,
) -> None:
if not backend.cmac_algorithm_supported(algorithm):
raise UnsupportedAlgorithm(
"This backend does not support CMAC.",
_Reasons.UNSUPPORTED_CIPHER,
)
self._backend = backend
self._key = algorithm.key
self._algorithm = algorithm
self._output_length = algorithm.block_size // 8
if ctx is None:
registry = self._backend._cipher_registry
adapter = registry[type(algorithm), CBC]
evp_cipher = adapter(self._backend, algorithm, CBC)
ctx = self._backend._lib.CMAC_CTX_new()
self._backend.openssl_assert(ctx != self._backend._ffi.NULL)
ctx = self._backend._ffi.gc(ctx, self._backend._lib.CMAC_CTX_free)
key_ptr = self._backend._ffi.from_buffer(self._key)
res = self._backend._lib.CMAC_Init(
ctx,
key_ptr,
len(self._key),
evp_cipher,
self._backend._ffi.NULL,
)
self._backend.openssl_assert(res == 1)
self._ctx = ctx
def update(self, data: bytes) -> None:
res = self._backend._lib.CMAC_Update(self._ctx, data, len(data))
self._backend.openssl_assert(res == 1)
def finalize(self) -> bytes:
buf = self._backend._ffi.new("unsigned char[]", self._output_length)
length = self._backend._ffi.new("size_t *", self._output_length)
res = self._backend._lib.CMAC_Final(self._ctx, buf, length)
self._backend.openssl_assert(res == 1)
self._ctx = None
return self._backend._ffi.buffer(buf)[:]
def copy(self) -> "_CMACContext":
copied_ctx = self._backend._lib.CMAC_CTX_new()
copied_ctx = self._backend._ffi.gc(
copied_ctx, self._backend._lib.CMAC_CTX_free
)
res = self._backend._lib.CMAC_CTX_copy(copied_ctx, self._ctx)
self._backend.openssl_assert(res == 1)
return _CMACContext(self._backend, self._algorithm, ctx=copied_ctx)
def verify(self, signature: bytes) -> None:
digest = self.finalize()
if not constant_time.bytes_eq(digest, signature):
raise InvalidSignature("Signature did not match digest.")

View File

@@ -0,0 +1,31 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from cryptography import x509
# CRLReason ::= ENUMERATED {
# unspecified (0),
# keyCompromise (1),
# cACompromise (2),
# affiliationChanged (3),
# superseded (4),
# cessationOfOperation (5),
# certificateHold (6),
# -- value 7 is not used
# removeFromCRL (8),
# privilegeWithdrawn (9),
# aACompromise (10) }
_CRL_ENTRY_REASON_ENUM_TO_CODE = {
x509.ReasonFlags.unspecified: 0,
x509.ReasonFlags.key_compromise: 1,
x509.ReasonFlags.ca_compromise: 2,
x509.ReasonFlags.affiliation_changed: 3,
x509.ReasonFlags.superseded: 4,
x509.ReasonFlags.cessation_of_operation: 5,
x509.ReasonFlags.certificate_hold: 6,
x509.ReasonFlags.remove_from_crl: 8,
x509.ReasonFlags.privilege_withdrawn: 9,
x509.ReasonFlags.aa_compromise: 10,
}

View File

@@ -0,0 +1,318 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric import dh
if typing.TYPE_CHECKING:
from cryptography.hazmat.backends.openssl.backend import Backend
def _dh_params_dup(dh_cdata, backend: "Backend"):
lib = backend._lib
ffi = backend._ffi
param_cdata = lib.DHparams_dup(dh_cdata)
backend.openssl_assert(param_cdata != ffi.NULL)
param_cdata = ffi.gc(param_cdata, lib.DH_free)
if lib.CRYPTOGRAPHY_IS_LIBRESSL:
# In libressl DHparams_dup don't copy q
q = ffi.new("BIGNUM **")
lib.DH_get0_pqg(dh_cdata, ffi.NULL, q, ffi.NULL)
q_dup = lib.BN_dup(q[0])
res = lib.DH_set0_pqg(param_cdata, ffi.NULL, q_dup, ffi.NULL)
backend.openssl_assert(res == 1)
return param_cdata
def _dh_cdata_to_parameters(dh_cdata, backend: "Backend") -> "_DHParameters":
param_cdata = _dh_params_dup(dh_cdata, backend)
return _DHParameters(backend, param_cdata)
class _DHParameters(dh.DHParameters):
def __init__(self, backend: "Backend", dh_cdata):
self._backend = backend
self._dh_cdata = dh_cdata
def parameter_numbers(self) -> dh.DHParameterNumbers:
p = self._backend._ffi.new("BIGNUM **")
g = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DH_get0_pqg(self._dh_cdata, p, q, g)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(g[0] != self._backend._ffi.NULL)
q_val: typing.Optional[int]
if q[0] == self._backend._ffi.NULL:
q_val = None
else:
q_val = self._backend._bn_to_int(q[0])
return dh.DHParameterNumbers(
p=self._backend._bn_to_int(p[0]),
g=self._backend._bn_to_int(g[0]),
q=q_val,
)
def generate_private_key(self) -> dh.DHPrivateKey:
return self._backend.generate_dh_private_key(self)
def parameter_bytes(
self,
encoding: serialization.Encoding,
format: serialization.ParameterFormat,
) -> bytes:
if encoding is serialization.Encoding.OpenSSH:
raise TypeError("OpenSSH encoding is not supported")
if format is not serialization.ParameterFormat.PKCS3:
raise ValueError("Only PKCS3 serialization is supported")
q = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DH_get0_pqg(
self._dh_cdata, self._backend._ffi.NULL, q, self._backend._ffi.NULL
)
if (
q[0] != self._backend._ffi.NULL
and not self._backend._lib.Cryptography_HAS_EVP_PKEY_DHX
):
raise UnsupportedAlgorithm(
"DH X9.42 serialization is not supported",
_Reasons.UNSUPPORTED_SERIALIZATION,
)
if encoding is serialization.Encoding.PEM:
if q[0] != self._backend._ffi.NULL:
write_bio = self._backend._lib.PEM_write_bio_DHxparams
else:
write_bio = self._backend._lib.PEM_write_bio_DHparams
elif encoding is serialization.Encoding.DER:
if q[0] != self._backend._ffi.NULL:
write_bio = self._backend._lib.Cryptography_i2d_DHxparams_bio
else:
write_bio = self._backend._lib.i2d_DHparams_bio
else:
raise TypeError("encoding must be an item from the Encoding enum")
bio = self._backend._create_mem_bio_gc()
res = write_bio(bio, self._dh_cdata)
self._backend.openssl_assert(res == 1)
return self._backend._read_mem_bio(bio)
def _get_dh_num_bits(backend, dh_cdata) -> int:
p = backend._ffi.new("BIGNUM **")
backend._lib.DH_get0_pqg(dh_cdata, p, backend._ffi.NULL, backend._ffi.NULL)
backend.openssl_assert(p[0] != backend._ffi.NULL)
return backend._lib.BN_num_bits(p[0])
class _DHPrivateKey(dh.DHPrivateKey):
def __init__(self, backend: "Backend", dh_cdata, evp_pkey):
self._backend = backend
self._dh_cdata = dh_cdata
self._evp_pkey = evp_pkey
self._key_size_bytes = self._backend._lib.DH_size(dh_cdata)
@property
def key_size(self) -> int:
return _get_dh_num_bits(self._backend, self._dh_cdata)
def private_numbers(self) -> dh.DHPrivateNumbers:
p = self._backend._ffi.new("BIGNUM **")
g = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DH_get0_pqg(self._dh_cdata, p, q, g)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(g[0] != self._backend._ffi.NULL)
if q[0] == self._backend._ffi.NULL:
q_val = None
else:
q_val = self._backend._bn_to_int(q[0])
pub_key = self._backend._ffi.new("BIGNUM **")
priv_key = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DH_get0_key(self._dh_cdata, pub_key, priv_key)
self._backend.openssl_assert(pub_key[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(priv_key[0] != self._backend._ffi.NULL)
return dh.DHPrivateNumbers(
public_numbers=dh.DHPublicNumbers(
parameter_numbers=dh.DHParameterNumbers(
p=self._backend._bn_to_int(p[0]),
g=self._backend._bn_to_int(g[0]),
q=q_val,
),
y=self._backend._bn_to_int(pub_key[0]),
),
x=self._backend._bn_to_int(priv_key[0]),
)
def exchange(self, peer_public_key: dh.DHPublicKey) -> bytes:
if not isinstance(peer_public_key, _DHPublicKey):
raise TypeError("peer_public_key must be a DHPublicKey")
ctx = self._backend._lib.EVP_PKEY_CTX_new(
self._evp_pkey, self._backend._ffi.NULL
)
self._backend.openssl_assert(ctx != self._backend._ffi.NULL)
ctx = self._backend._ffi.gc(ctx, self._backend._lib.EVP_PKEY_CTX_free)
res = self._backend._lib.EVP_PKEY_derive_init(ctx)
self._backend.openssl_assert(res == 1)
res = self._backend._lib.EVP_PKEY_derive_set_peer(
ctx, peer_public_key._evp_pkey
)
# Invalid kex errors here in OpenSSL 3.0 because checks were moved
# to EVP_PKEY_derive_set_peer
self._exchange_assert(res == 1)
keylen = self._backend._ffi.new("size_t *")
res = self._backend._lib.EVP_PKEY_derive(
ctx, self._backend._ffi.NULL, keylen
)
# Invalid kex errors here in OpenSSL < 3
self._exchange_assert(res == 1)
self._backend.openssl_assert(keylen[0] > 0)
buf = self._backend._ffi.new("unsigned char[]", keylen[0])
res = self._backend._lib.EVP_PKEY_derive(ctx, buf, keylen)
self._backend.openssl_assert(res == 1)
key = self._backend._ffi.buffer(buf, keylen[0])[:]
pad = self._key_size_bytes - len(key)
if pad > 0:
key = (b"\x00" * pad) + key
return key
def _exchange_assert(self, ok: bool) -> None:
if not ok:
errors_with_text = self._backend._consume_errors_with_text()
raise ValueError(
"Error computing shared key.",
errors_with_text,
)
def public_key(self) -> dh.DHPublicKey:
dh_cdata = _dh_params_dup(self._dh_cdata, self._backend)
pub_key = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DH_get0_key(
self._dh_cdata, pub_key, self._backend._ffi.NULL
)
self._backend.openssl_assert(pub_key[0] != self._backend._ffi.NULL)
pub_key_dup = self._backend._lib.BN_dup(pub_key[0])
self._backend.openssl_assert(pub_key_dup != self._backend._ffi.NULL)
res = self._backend._lib.DH_set0_key(
dh_cdata, pub_key_dup, self._backend._ffi.NULL
)
self._backend.openssl_assert(res == 1)
evp_pkey = self._backend._dh_cdata_to_evp_pkey(dh_cdata)
return _DHPublicKey(self._backend, dh_cdata, evp_pkey)
def parameters(self) -> dh.DHParameters:
return _dh_cdata_to_parameters(self._dh_cdata, self._backend)
def private_bytes(
self,
encoding: serialization.Encoding,
format: serialization.PrivateFormat,
encryption_algorithm: serialization.KeySerializationEncryption,
) -> bytes:
if format is not serialization.PrivateFormat.PKCS8:
raise ValueError(
"DH private keys support only PKCS8 serialization"
)
if not self._backend._lib.Cryptography_HAS_EVP_PKEY_DHX:
q = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DH_get0_pqg(
self._dh_cdata,
self._backend._ffi.NULL,
q,
self._backend._ffi.NULL,
)
if q[0] != self._backend._ffi.NULL:
raise UnsupportedAlgorithm(
"DH X9.42 serialization is not supported",
_Reasons.UNSUPPORTED_SERIALIZATION,
)
return self._backend._private_key_bytes(
encoding,
format,
encryption_algorithm,
self,
self._evp_pkey,
self._dh_cdata,
)
class _DHPublicKey(dh.DHPublicKey):
def __init__(self, backend: "Backend", dh_cdata, evp_pkey):
self._backend = backend
self._dh_cdata = dh_cdata
self._evp_pkey = evp_pkey
self._key_size_bits = _get_dh_num_bits(self._backend, self._dh_cdata)
@property
def key_size(self) -> int:
return self._key_size_bits
def public_numbers(self) -> dh.DHPublicNumbers:
p = self._backend._ffi.new("BIGNUM **")
g = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DH_get0_pqg(self._dh_cdata, p, q, g)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(g[0] != self._backend._ffi.NULL)
if q[0] == self._backend._ffi.NULL:
q_val = None
else:
q_val = self._backend._bn_to_int(q[0])
pub_key = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DH_get0_key(
self._dh_cdata, pub_key, self._backend._ffi.NULL
)
self._backend.openssl_assert(pub_key[0] != self._backend._ffi.NULL)
return dh.DHPublicNumbers(
parameter_numbers=dh.DHParameterNumbers(
p=self._backend._bn_to_int(p[0]),
g=self._backend._bn_to_int(g[0]),
q=q_val,
),
y=self._backend._bn_to_int(pub_key[0]),
)
def parameters(self) -> dh.DHParameters:
return _dh_cdata_to_parameters(self._dh_cdata, self._backend)
def public_bytes(
self,
encoding: serialization.Encoding,
format: serialization.PublicFormat,
) -> bytes:
if format is not serialization.PublicFormat.SubjectPublicKeyInfo:
raise ValueError(
"DH public keys support only "
"SubjectPublicKeyInfo serialization"
)
if not self._backend._lib.Cryptography_HAS_EVP_PKEY_DHX:
q = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DH_get0_pqg(
self._dh_cdata,
self._backend._ffi.NULL,
q,
self._backend._ffi.NULL,
)
if q[0] != self._backend._ffi.NULL:
raise UnsupportedAlgorithm(
"DH X9.42 serialization is not supported",
_Reasons.UNSUPPORTED_SERIALIZATION,
)
return self._backend._public_key_bytes(
encoding, format, self, self._evp_pkey, None
)

View File

@@ -0,0 +1,239 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography.exceptions import InvalidSignature
from cryptography.hazmat.backends.openssl.utils import (
_calculate_digest_and_algorithm,
)
from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric import (
dsa,
utils as asym_utils,
)
if typing.TYPE_CHECKING:
from cryptography.hazmat.backends.openssl.backend import Backend
def _dsa_sig_sign(
backend: "Backend", private_key: "_DSAPrivateKey", data: bytes
) -> bytes:
sig_buf_len = backend._lib.DSA_size(private_key._dsa_cdata)
sig_buf = backend._ffi.new("unsigned char[]", sig_buf_len)
buflen = backend._ffi.new("unsigned int *")
# The first parameter passed to DSA_sign is unused by OpenSSL but
# must be an integer.
res = backend._lib.DSA_sign(
0, data, len(data), sig_buf, buflen, private_key._dsa_cdata
)
backend.openssl_assert(res == 1)
backend.openssl_assert(buflen[0])
return backend._ffi.buffer(sig_buf)[: buflen[0]]
def _dsa_sig_verify(
backend: "Backend",
public_key: "_DSAPublicKey",
signature: bytes,
data: bytes,
) -> None:
# The first parameter passed to DSA_verify is unused by OpenSSL but
# must be an integer.
res = backend._lib.DSA_verify(
0, data, len(data), signature, len(signature), public_key._dsa_cdata
)
if res != 1:
backend._consume_errors()
raise InvalidSignature
class _DSAParameters(dsa.DSAParameters):
def __init__(self, backend: "Backend", dsa_cdata):
self._backend = backend
self._dsa_cdata = dsa_cdata
def parameter_numbers(self) -> dsa.DSAParameterNumbers:
p = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
g = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DSA_get0_pqg(self._dsa_cdata, p, q, g)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(q[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(g[0] != self._backend._ffi.NULL)
return dsa.DSAParameterNumbers(
p=self._backend._bn_to_int(p[0]),
q=self._backend._bn_to_int(q[0]),
g=self._backend._bn_to_int(g[0]),
)
def generate_private_key(self) -> dsa.DSAPrivateKey:
return self._backend.generate_dsa_private_key(self)
class _DSAPrivateKey(dsa.DSAPrivateKey):
_key_size: int
def __init__(self, backend: "Backend", dsa_cdata, evp_pkey):
self._backend = backend
self._dsa_cdata = dsa_cdata
self._evp_pkey = evp_pkey
p = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DSA_get0_pqg(
dsa_cdata, p, self._backend._ffi.NULL, self._backend._ffi.NULL
)
self._backend.openssl_assert(p[0] != backend._ffi.NULL)
self._key_size = self._backend._lib.BN_num_bits(p[0])
@property
def key_size(self) -> int:
return self._key_size
def private_numbers(self) -> dsa.DSAPrivateNumbers:
p = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
g = self._backend._ffi.new("BIGNUM **")
pub_key = self._backend._ffi.new("BIGNUM **")
priv_key = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DSA_get0_pqg(self._dsa_cdata, p, q, g)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(q[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(g[0] != self._backend._ffi.NULL)
self._backend._lib.DSA_get0_key(self._dsa_cdata, pub_key, priv_key)
self._backend.openssl_assert(pub_key[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(priv_key[0] != self._backend._ffi.NULL)
return dsa.DSAPrivateNumbers(
public_numbers=dsa.DSAPublicNumbers(
parameter_numbers=dsa.DSAParameterNumbers(
p=self._backend._bn_to_int(p[0]),
q=self._backend._bn_to_int(q[0]),
g=self._backend._bn_to_int(g[0]),
),
y=self._backend._bn_to_int(pub_key[0]),
),
x=self._backend._bn_to_int(priv_key[0]),
)
def public_key(self) -> dsa.DSAPublicKey:
dsa_cdata = self._backend._lib.DSAparams_dup(self._dsa_cdata)
self._backend.openssl_assert(dsa_cdata != self._backend._ffi.NULL)
dsa_cdata = self._backend._ffi.gc(
dsa_cdata, self._backend._lib.DSA_free
)
pub_key = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DSA_get0_key(
self._dsa_cdata, pub_key, self._backend._ffi.NULL
)
self._backend.openssl_assert(pub_key[0] != self._backend._ffi.NULL)
pub_key_dup = self._backend._lib.BN_dup(pub_key[0])
res = self._backend._lib.DSA_set0_key(
dsa_cdata, pub_key_dup, self._backend._ffi.NULL
)
self._backend.openssl_assert(res == 1)
evp_pkey = self._backend._dsa_cdata_to_evp_pkey(dsa_cdata)
return _DSAPublicKey(self._backend, dsa_cdata, evp_pkey)
def parameters(self) -> dsa.DSAParameters:
dsa_cdata = self._backend._lib.DSAparams_dup(self._dsa_cdata)
self._backend.openssl_assert(dsa_cdata != self._backend._ffi.NULL)
dsa_cdata = self._backend._ffi.gc(
dsa_cdata, self._backend._lib.DSA_free
)
return _DSAParameters(self._backend, dsa_cdata)
def private_bytes(
self,
encoding: serialization.Encoding,
format: serialization.PrivateFormat,
encryption_algorithm: serialization.KeySerializationEncryption,
) -> bytes:
return self._backend._private_key_bytes(
encoding,
format,
encryption_algorithm,
self,
self._evp_pkey,
self._dsa_cdata,
)
def sign(
self,
data: bytes,
algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm],
) -> bytes:
data, _ = _calculate_digest_and_algorithm(data, algorithm)
return _dsa_sig_sign(self._backend, self, data)
class _DSAPublicKey(dsa.DSAPublicKey):
_key_size: int
def __init__(self, backend: "Backend", dsa_cdata, evp_pkey):
self._backend = backend
self._dsa_cdata = dsa_cdata
self._evp_pkey = evp_pkey
p = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DSA_get0_pqg(
dsa_cdata, p, self._backend._ffi.NULL, self._backend._ffi.NULL
)
self._backend.openssl_assert(p[0] != backend._ffi.NULL)
self._key_size = self._backend._lib.BN_num_bits(p[0])
@property
def key_size(self) -> int:
return self._key_size
def public_numbers(self) -> dsa.DSAPublicNumbers:
p = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
g = self._backend._ffi.new("BIGNUM **")
pub_key = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DSA_get0_pqg(self._dsa_cdata, p, q, g)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(q[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(g[0] != self._backend._ffi.NULL)
self._backend._lib.DSA_get0_key(
self._dsa_cdata, pub_key, self._backend._ffi.NULL
)
self._backend.openssl_assert(pub_key[0] != self._backend._ffi.NULL)
return dsa.DSAPublicNumbers(
parameter_numbers=dsa.DSAParameterNumbers(
p=self._backend._bn_to_int(p[0]),
q=self._backend._bn_to_int(q[0]),
g=self._backend._bn_to_int(g[0]),
),
y=self._backend._bn_to_int(pub_key[0]),
)
def parameters(self) -> dsa.DSAParameters:
dsa_cdata = self._backend._lib.DSAparams_dup(self._dsa_cdata)
dsa_cdata = self._backend._ffi.gc(
dsa_cdata, self._backend._lib.DSA_free
)
return _DSAParameters(self._backend, dsa_cdata)
def public_bytes(
self,
encoding: serialization.Encoding,
format: serialization.PublicFormat,
) -> bytes:
return self._backend._public_key_bytes(
encoding, format, self, self._evp_pkey, None
)
def verify(
self,
signature: bytes,
data: bytes,
algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm],
) -> None:
data, _ = _calculate_digest_and_algorithm(data, algorithm)
return _dsa_sig_verify(self._backend, self, signature, data)

View File

@@ -0,0 +1,315 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography.exceptions import (
InvalidSignature,
UnsupportedAlgorithm,
_Reasons,
)
from cryptography.hazmat.backends.openssl.utils import (
_calculate_digest_and_algorithm,
_evp_pkey_derive,
)
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric import ec
if typing.TYPE_CHECKING:
from cryptography.hazmat.backends.openssl.backend import Backend
def _check_signature_algorithm(
signature_algorithm: ec.EllipticCurveSignatureAlgorithm,
) -> None:
if not isinstance(signature_algorithm, ec.ECDSA):
raise UnsupportedAlgorithm(
"Unsupported elliptic curve signature algorithm.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM,
)
def _ec_key_curve_sn(backend: "Backend", ec_key) -> str:
group = backend._lib.EC_KEY_get0_group(ec_key)
backend.openssl_assert(group != backend._ffi.NULL)
nid = backend._lib.EC_GROUP_get_curve_name(group)
# The following check is to find EC keys with unnamed curves and raise
# an error for now.
if nid == backend._lib.NID_undef:
raise ValueError(
"ECDSA keys with explicit parameters are unsupported at this time"
)
# This is like the above check, but it also catches the case where you
# explicitly encoded a curve with the same parameters as a named curve.
# Don't do that.
if (
not backend._lib.CRYPTOGRAPHY_IS_LIBRESSL
and backend._lib.EC_GROUP_get_asn1_flag(group) == 0
):
raise ValueError(
"ECDSA keys with explicit parameters are unsupported at this time"
)
curve_name = backend._lib.OBJ_nid2sn(nid)
backend.openssl_assert(curve_name != backend._ffi.NULL)
sn = backend._ffi.string(curve_name).decode("ascii")
return sn
def _mark_asn1_named_ec_curve(backend: "Backend", ec_cdata):
"""
Set the named curve flag on the EC_KEY. This causes OpenSSL to
serialize EC keys along with their curve OID which makes
deserialization easier.
"""
backend._lib.EC_KEY_set_asn1_flag(
ec_cdata, backend._lib.OPENSSL_EC_NAMED_CURVE
)
def _check_key_infinity(backend: "Backend", ec_cdata) -> None:
point = backend._lib.EC_KEY_get0_public_key(ec_cdata)
backend.openssl_assert(point != backend._ffi.NULL)
group = backend._lib.EC_KEY_get0_group(ec_cdata)
backend.openssl_assert(group != backend._ffi.NULL)
if backend._lib.EC_POINT_is_at_infinity(group, point):
raise ValueError(
"Cannot load an EC public key where the point is at infinity"
)
def _sn_to_elliptic_curve(backend: "Backend", sn: str) -> ec.EllipticCurve:
try:
return ec._CURVE_TYPES[sn]()
except KeyError:
raise UnsupportedAlgorithm(
"{} is not a supported elliptic curve".format(sn),
_Reasons.UNSUPPORTED_ELLIPTIC_CURVE,
)
def _ecdsa_sig_sign(
backend: "Backend", private_key: "_EllipticCurvePrivateKey", data: bytes
) -> bytes:
max_size = backend._lib.ECDSA_size(private_key._ec_key)
backend.openssl_assert(max_size > 0)
sigbuf = backend._ffi.new("unsigned char[]", max_size)
siglen_ptr = backend._ffi.new("unsigned int[]", 1)
res = backend._lib.ECDSA_sign(
0, data, len(data), sigbuf, siglen_ptr, private_key._ec_key
)
backend.openssl_assert(res == 1)
return backend._ffi.buffer(sigbuf)[: siglen_ptr[0]]
def _ecdsa_sig_verify(
backend: "Backend",
public_key: "_EllipticCurvePublicKey",
signature: bytes,
data: bytes,
) -> None:
res = backend._lib.ECDSA_verify(
0, data, len(data), signature, len(signature), public_key._ec_key
)
if res != 1:
backend._consume_errors()
raise InvalidSignature
class _EllipticCurvePrivateKey(ec.EllipticCurvePrivateKey):
def __init__(self, backend: "Backend", ec_key_cdata, evp_pkey):
self._backend = backend
self._ec_key = ec_key_cdata
self._evp_pkey = evp_pkey
sn = _ec_key_curve_sn(backend, ec_key_cdata)
self._curve = _sn_to_elliptic_curve(backend, sn)
_mark_asn1_named_ec_curve(backend, ec_key_cdata)
_check_key_infinity(backend, ec_key_cdata)
@property
def curve(self) -> ec.EllipticCurve:
return self._curve
@property
def key_size(self) -> int:
return self.curve.key_size
def exchange(
self, algorithm: ec.ECDH, peer_public_key: ec.EllipticCurvePublicKey
) -> bytes:
if not (
self._backend.elliptic_curve_exchange_algorithm_supported(
algorithm, self.curve
)
):
raise UnsupportedAlgorithm(
"This backend does not support the ECDH algorithm.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM,
)
if peer_public_key.curve.name != self.curve.name:
raise ValueError(
"peer_public_key and self are not on the same curve"
)
return _evp_pkey_derive(self._backend, self._evp_pkey, peer_public_key)
def public_key(self) -> ec.EllipticCurvePublicKey:
group = self._backend._lib.EC_KEY_get0_group(self._ec_key)
self._backend.openssl_assert(group != self._backend._ffi.NULL)
curve_nid = self._backend._lib.EC_GROUP_get_curve_name(group)
public_ec_key = self._backend._ec_key_new_by_curve_nid(curve_nid)
point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)
self._backend.openssl_assert(point != self._backend._ffi.NULL)
res = self._backend._lib.EC_KEY_set_public_key(public_ec_key, point)
self._backend.openssl_assert(res == 1)
evp_pkey = self._backend._ec_cdata_to_evp_pkey(public_ec_key)
return _EllipticCurvePublicKey(self._backend, public_ec_key, evp_pkey)
def private_numbers(self) -> ec.EllipticCurvePrivateNumbers:
bn = self._backend._lib.EC_KEY_get0_private_key(self._ec_key)
private_value = self._backend._bn_to_int(bn)
return ec.EllipticCurvePrivateNumbers(
private_value=private_value,
public_numbers=self.public_key().public_numbers(),
)
def private_bytes(
self,
encoding: serialization.Encoding,
format: serialization.PrivateFormat,
encryption_algorithm: serialization.KeySerializationEncryption,
) -> bytes:
return self._backend._private_key_bytes(
encoding,
format,
encryption_algorithm,
self,
self._evp_pkey,
self._ec_key,
)
def sign(
self,
data: bytes,
signature_algorithm: ec.EllipticCurveSignatureAlgorithm,
) -> bytes:
_check_signature_algorithm(signature_algorithm)
data, _ = _calculate_digest_and_algorithm(
data,
signature_algorithm.algorithm,
)
return _ecdsa_sig_sign(self._backend, self, data)
class _EllipticCurvePublicKey(ec.EllipticCurvePublicKey):
def __init__(self, backend: "Backend", ec_key_cdata, evp_pkey):
self._backend = backend
self._ec_key = ec_key_cdata
self._evp_pkey = evp_pkey
sn = _ec_key_curve_sn(backend, ec_key_cdata)
self._curve = _sn_to_elliptic_curve(backend, sn)
_mark_asn1_named_ec_curve(backend, ec_key_cdata)
_check_key_infinity(backend, ec_key_cdata)
@property
def curve(self) -> ec.EllipticCurve:
return self._curve
@property
def key_size(self) -> int:
return self.curve.key_size
def public_numbers(self) -> ec.EllipticCurvePublicNumbers:
get_func, group = self._backend._ec_key_determine_group_get_func(
self._ec_key
)
point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)
self._backend.openssl_assert(point != self._backend._ffi.NULL)
with self._backend._tmp_bn_ctx() as bn_ctx:
bn_x = self._backend._lib.BN_CTX_get(bn_ctx)
bn_y = self._backend._lib.BN_CTX_get(bn_ctx)
res = get_func(group, point, bn_x, bn_y, bn_ctx)
self._backend.openssl_assert(res == 1)
x = self._backend._bn_to_int(bn_x)
y = self._backend._bn_to_int(bn_y)
return ec.EllipticCurvePublicNumbers(x=x, y=y, curve=self._curve)
def _encode_point(self, format: serialization.PublicFormat) -> bytes:
if format is serialization.PublicFormat.CompressedPoint:
conversion = self._backend._lib.POINT_CONVERSION_COMPRESSED
else:
assert format is serialization.PublicFormat.UncompressedPoint
conversion = self._backend._lib.POINT_CONVERSION_UNCOMPRESSED
group = self._backend._lib.EC_KEY_get0_group(self._ec_key)
self._backend.openssl_assert(group != self._backend._ffi.NULL)
point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)
self._backend.openssl_assert(point != self._backend._ffi.NULL)
with self._backend._tmp_bn_ctx() as bn_ctx:
buflen = self._backend._lib.EC_POINT_point2oct(
group, point, conversion, self._backend._ffi.NULL, 0, bn_ctx
)
self._backend.openssl_assert(buflen > 0)
buf = self._backend._ffi.new("char[]", buflen)
res = self._backend._lib.EC_POINT_point2oct(
group, point, conversion, buf, buflen, bn_ctx
)
self._backend.openssl_assert(buflen == res)
return self._backend._ffi.buffer(buf)[:]
def public_bytes(
self,
encoding: serialization.Encoding,
format: serialization.PublicFormat,
) -> bytes:
if (
encoding is serialization.Encoding.X962
or format is serialization.PublicFormat.CompressedPoint
or format is serialization.PublicFormat.UncompressedPoint
):
if encoding is not serialization.Encoding.X962 or format not in (
serialization.PublicFormat.CompressedPoint,
serialization.PublicFormat.UncompressedPoint,
):
raise ValueError(
"X962 encoding must be used with CompressedPoint or "
"UncompressedPoint format"
)
return self._encode_point(format)
else:
return self._backend._public_key_bytes(
encoding, format, self, self._evp_pkey, None
)
def verify(
self,
signature: bytes,
data: bytes,
signature_algorithm: ec.EllipticCurveSignatureAlgorithm,
) -> None:
_check_signature_algorithm(signature_algorithm)
data, _ = _calculate_digest_and_algorithm(
data,
signature_algorithm.algorithm,
)
_ecdsa_sig_verify(self._backend, self, signature, data)

View File

@@ -0,0 +1,155 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography import exceptions
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric.ed25519 import (
Ed25519PrivateKey,
Ed25519PublicKey,
_ED25519_KEY_SIZE,
_ED25519_SIG_SIZE,
)
if typing.TYPE_CHECKING:
from cryptography.hazmat.backends.openssl.backend import Backend
class _Ed25519PublicKey(Ed25519PublicKey):
def __init__(self, backend: "Backend", evp_pkey):
self._backend = backend
self._evp_pkey = evp_pkey
def public_bytes(
self,
encoding: serialization.Encoding,
format: serialization.PublicFormat,
) -> bytes:
if (
encoding is serialization.Encoding.Raw
or format is serialization.PublicFormat.Raw
):
if (
encoding is not serialization.Encoding.Raw
or format is not serialization.PublicFormat.Raw
):
raise ValueError(
"When using Raw both encoding and format must be Raw"
)
return self._raw_public_bytes()
return self._backend._public_key_bytes(
encoding, format, self, self._evp_pkey, None
)
def _raw_public_bytes(self) -> bytes:
buf = self._backend._ffi.new("unsigned char []", _ED25519_KEY_SIZE)
buflen = self._backend._ffi.new("size_t *", _ED25519_KEY_SIZE)
res = self._backend._lib.EVP_PKEY_get_raw_public_key(
self._evp_pkey, buf, buflen
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _ED25519_KEY_SIZE)
return self._backend._ffi.buffer(buf, _ED25519_KEY_SIZE)[:]
def verify(self, signature: bytes, data: bytes) -> None:
evp_md_ctx = self._backend._lib.EVP_MD_CTX_new()
self._backend.openssl_assert(evp_md_ctx != self._backend._ffi.NULL)
evp_md_ctx = self._backend._ffi.gc(
evp_md_ctx, self._backend._lib.EVP_MD_CTX_free
)
res = self._backend._lib.EVP_DigestVerifyInit(
evp_md_ctx,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
self._evp_pkey,
)
self._backend.openssl_assert(res == 1)
res = self._backend._lib.EVP_DigestVerify(
evp_md_ctx, signature, len(signature), data, len(data)
)
if res != 1:
self._backend._consume_errors()
raise exceptions.InvalidSignature
class _Ed25519PrivateKey(Ed25519PrivateKey):
def __init__(self, backend: "Backend", evp_pkey):
self._backend = backend
self._evp_pkey = evp_pkey
def public_key(self) -> Ed25519PublicKey:
buf = self._backend._ffi.new("unsigned char []", _ED25519_KEY_SIZE)
buflen = self._backend._ffi.new("size_t *", _ED25519_KEY_SIZE)
res = self._backend._lib.EVP_PKEY_get_raw_public_key(
self._evp_pkey, buf, buflen
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _ED25519_KEY_SIZE)
public_bytes = self._backend._ffi.buffer(buf)[:]
return self._backend.ed25519_load_public_bytes(public_bytes)
def sign(self, data: bytes) -> bytes:
evp_md_ctx = self._backend._lib.EVP_MD_CTX_new()
self._backend.openssl_assert(evp_md_ctx != self._backend._ffi.NULL)
evp_md_ctx = self._backend._ffi.gc(
evp_md_ctx, self._backend._lib.EVP_MD_CTX_free
)
res = self._backend._lib.EVP_DigestSignInit(
evp_md_ctx,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
self._evp_pkey,
)
self._backend.openssl_assert(res == 1)
buf = self._backend._ffi.new("unsigned char[]", _ED25519_SIG_SIZE)
buflen = self._backend._ffi.new("size_t *", len(buf))
res = self._backend._lib.EVP_DigestSign(
evp_md_ctx, buf, buflen, data, len(data)
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _ED25519_SIG_SIZE)
return self._backend._ffi.buffer(buf, buflen[0])[:]
def private_bytes(
self,
encoding: serialization.Encoding,
format: serialization.PrivateFormat,
encryption_algorithm: serialization.KeySerializationEncryption,
) -> bytes:
if (
encoding is serialization.Encoding.Raw
or format is serialization.PublicFormat.Raw
):
if (
format is not serialization.PrivateFormat.Raw
or encoding is not serialization.Encoding.Raw
or not isinstance(
encryption_algorithm, serialization.NoEncryption
)
):
raise ValueError(
"When using Raw both encoding and format must be Raw "
"and encryption_algorithm must be NoEncryption()"
)
return self._raw_private_bytes()
return self._backend._private_key_bytes(
encoding, format, encryption_algorithm, self, self._evp_pkey, None
)
def _raw_private_bytes(self) -> bytes:
buf = self._backend._ffi.new("unsigned char []", _ED25519_KEY_SIZE)
buflen = self._backend._ffi.new("size_t *", _ED25519_KEY_SIZE)
res = self._backend._lib.EVP_PKEY_get_raw_private_key(
self._evp_pkey, buf, buflen
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _ED25519_KEY_SIZE)
return self._backend._ffi.buffer(buf, _ED25519_KEY_SIZE)[:]

View File

@@ -0,0 +1,156 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography import exceptions
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric.ed448 import (
Ed448PrivateKey,
Ed448PublicKey,
)
if typing.TYPE_CHECKING:
from cryptography.hazmat.backends.openssl.backend import Backend
_ED448_KEY_SIZE = 57
_ED448_SIG_SIZE = 114
class _Ed448PublicKey(Ed448PublicKey):
def __init__(self, backend: "Backend", evp_pkey):
self._backend = backend
self._evp_pkey = evp_pkey
def public_bytes(
self,
encoding: serialization.Encoding,
format: serialization.PublicFormat,
) -> bytes:
if (
encoding is serialization.Encoding.Raw
or format is serialization.PublicFormat.Raw
):
if (
encoding is not serialization.Encoding.Raw
or format is not serialization.PublicFormat.Raw
):
raise ValueError(
"When using Raw both encoding and format must be Raw"
)
return self._raw_public_bytes()
return self._backend._public_key_bytes(
encoding, format, self, self._evp_pkey, None
)
def _raw_public_bytes(self) -> bytes:
buf = self._backend._ffi.new("unsigned char []", _ED448_KEY_SIZE)
buflen = self._backend._ffi.new("size_t *", _ED448_KEY_SIZE)
res = self._backend._lib.EVP_PKEY_get_raw_public_key(
self._evp_pkey, buf, buflen
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _ED448_KEY_SIZE)
return self._backend._ffi.buffer(buf, _ED448_KEY_SIZE)[:]
def verify(self, signature: bytes, data: bytes) -> None:
evp_md_ctx = self._backend._lib.EVP_MD_CTX_new()
self._backend.openssl_assert(evp_md_ctx != self._backend._ffi.NULL)
evp_md_ctx = self._backend._ffi.gc(
evp_md_ctx, self._backend._lib.EVP_MD_CTX_free
)
res = self._backend._lib.EVP_DigestVerifyInit(
evp_md_ctx,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
self._evp_pkey,
)
self._backend.openssl_assert(res == 1)
res = self._backend._lib.EVP_DigestVerify(
evp_md_ctx, signature, len(signature), data, len(data)
)
if res != 1:
self._backend._consume_errors()
raise exceptions.InvalidSignature
class _Ed448PrivateKey(Ed448PrivateKey):
def __init__(self, backend: "Backend", evp_pkey):
self._backend = backend
self._evp_pkey = evp_pkey
def public_key(self) -> Ed448PublicKey:
buf = self._backend._ffi.new("unsigned char []", _ED448_KEY_SIZE)
buflen = self._backend._ffi.new("size_t *", _ED448_KEY_SIZE)
res = self._backend._lib.EVP_PKEY_get_raw_public_key(
self._evp_pkey, buf, buflen
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _ED448_KEY_SIZE)
public_bytes = self._backend._ffi.buffer(buf)[:]
return self._backend.ed448_load_public_bytes(public_bytes)
def sign(self, data: bytes) -> bytes:
evp_md_ctx = self._backend._lib.EVP_MD_CTX_new()
self._backend.openssl_assert(evp_md_ctx != self._backend._ffi.NULL)
evp_md_ctx = self._backend._ffi.gc(
evp_md_ctx, self._backend._lib.EVP_MD_CTX_free
)
res = self._backend._lib.EVP_DigestSignInit(
evp_md_ctx,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
self._evp_pkey,
)
self._backend.openssl_assert(res == 1)
buf = self._backend._ffi.new("unsigned char[]", _ED448_SIG_SIZE)
buflen = self._backend._ffi.new("size_t *", len(buf))
res = self._backend._lib.EVP_DigestSign(
evp_md_ctx, buf, buflen, data, len(data)
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _ED448_SIG_SIZE)
return self._backend._ffi.buffer(buf, buflen[0])[:]
def private_bytes(
self,
encoding: serialization.Encoding,
format: serialization.PrivateFormat,
encryption_algorithm: serialization.KeySerializationEncryption,
) -> bytes:
if (
encoding is serialization.Encoding.Raw
or format is serialization.PublicFormat.Raw
):
if (
format is not serialization.PrivateFormat.Raw
or encoding is not serialization.Encoding.Raw
or not isinstance(
encryption_algorithm, serialization.NoEncryption
)
):
raise ValueError(
"When using Raw both encoding and format must be Raw "
"and encryption_algorithm must be NoEncryption()"
)
return self._raw_private_bytes()
return self._backend._private_key_bytes(
encoding, format, encryption_algorithm, self, self._evp_pkey, None
)
def _raw_private_bytes(self) -> bytes:
buf = self._backend._ffi.new("unsigned char []", _ED448_KEY_SIZE)
buflen = self._backend._ffi.new("size_t *", _ED448_KEY_SIZE)
res = self._backend._lib.EVP_PKEY_get_raw_private_key(
self._evp_pkey, buf, buflen
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _ED448_KEY_SIZE)
return self._backend._ffi.buffer(buf, _ED448_KEY_SIZE)[:]

View File

@@ -0,0 +1,18 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from cryptography import x509
_CRLREASONFLAGS = {
x509.ReasonFlags.key_compromise: 1,
x509.ReasonFlags.ca_compromise: 2,
x509.ReasonFlags.affiliation_changed: 3,
x509.ReasonFlags.superseded: 4,
x509.ReasonFlags.cessation_of_operation: 5,
x509.ReasonFlags.certificate_hold: 6,
x509.ReasonFlags.privilege_withdrawn: 7,
x509.ReasonFlags.aa_compromise: 8,
}

View File

@@ -0,0 +1,87 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import hashes
if typing.TYPE_CHECKING:
from cryptography.hazmat.backends.openssl.backend import Backend
class _HashContext(hashes.HashContext):
def __init__(
self, backend: "Backend", algorithm: hashes.HashAlgorithm, ctx=None
) -> None:
self._algorithm = algorithm
self._backend = backend
if ctx is None:
ctx = self._backend._lib.EVP_MD_CTX_new()
ctx = self._backend._ffi.gc(
ctx, self._backend._lib.EVP_MD_CTX_free
)
evp_md = self._backend._evp_md_from_algorithm(algorithm)
if evp_md == self._backend._ffi.NULL:
raise UnsupportedAlgorithm(
"{} is not a supported hash on this backend.".format(
algorithm.name
),
_Reasons.UNSUPPORTED_HASH,
)
res = self._backend._lib.EVP_DigestInit_ex(
ctx, evp_md, self._backend._ffi.NULL
)
self._backend.openssl_assert(res != 0)
self._ctx = ctx
@property
def algorithm(self) -> hashes.HashAlgorithm:
return self._algorithm
def copy(self) -> "_HashContext":
copied_ctx = self._backend._lib.EVP_MD_CTX_new()
copied_ctx = self._backend._ffi.gc(
copied_ctx, self._backend._lib.EVP_MD_CTX_free
)
res = self._backend._lib.EVP_MD_CTX_copy_ex(copied_ctx, self._ctx)
self._backend.openssl_assert(res != 0)
return _HashContext(self._backend, self.algorithm, ctx=copied_ctx)
def update(self, data: bytes) -> None:
data_ptr = self._backend._ffi.from_buffer(data)
res = self._backend._lib.EVP_DigestUpdate(
self._ctx, data_ptr, len(data)
)
self._backend.openssl_assert(res != 0)
def finalize(self) -> bytes:
if isinstance(self.algorithm, hashes.ExtendableOutputFunction):
# extendable output functions use a different finalize
return self._finalize_xof()
else:
buf = self._backend._ffi.new(
"unsigned char[]", self._backend._lib.EVP_MAX_MD_SIZE
)
outlen = self._backend._ffi.new("unsigned int *")
res = self._backend._lib.EVP_DigestFinal_ex(self._ctx, buf, outlen)
self._backend.openssl_assert(res != 0)
self._backend.openssl_assert(
outlen[0] == self.algorithm.digest_size
)
return self._backend._ffi.buffer(buf)[: outlen[0]]
def _finalize_xof(self) -> bytes:
buf = self._backend._ffi.new(
"unsigned char[]", self.algorithm.digest_size
)
res = self._backend._lib.EVP_DigestFinalXOF(
self._ctx, buf, self.algorithm.digest_size
)
self._backend.openssl_assert(res != 0)
return self._backend._ffi.buffer(buf)[: self.algorithm.digest_size]

View File

@@ -0,0 +1,85 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography.exceptions import (
InvalidSignature,
UnsupportedAlgorithm,
_Reasons,
)
from cryptography.hazmat.primitives import constant_time, hashes
if typing.TYPE_CHECKING:
from cryptography.hazmat.backends.openssl.backend import Backend
class _HMACContext(hashes.HashContext):
def __init__(
self,
backend: "Backend",
key: bytes,
algorithm: hashes.HashAlgorithm,
ctx=None,
):
self._algorithm = algorithm
self._backend = backend
if ctx is None:
ctx = self._backend._lib.HMAC_CTX_new()
self._backend.openssl_assert(ctx != self._backend._ffi.NULL)
ctx = self._backend._ffi.gc(ctx, self._backend._lib.HMAC_CTX_free)
evp_md = self._backend._evp_md_from_algorithm(algorithm)
if evp_md == self._backend._ffi.NULL:
raise UnsupportedAlgorithm(
"{} is not a supported hash on this backend".format(
algorithm.name
),
_Reasons.UNSUPPORTED_HASH,
)
key_ptr = self._backend._ffi.from_buffer(key)
res = self._backend._lib.HMAC_Init_ex(
ctx, key_ptr, len(key), evp_md, self._backend._ffi.NULL
)
self._backend.openssl_assert(res != 0)
self._ctx = ctx
self._key = key
@property
def algorithm(self) -> hashes.HashAlgorithm:
return self._algorithm
def copy(self) -> "_HMACContext":
copied_ctx = self._backend._lib.HMAC_CTX_new()
self._backend.openssl_assert(copied_ctx != self._backend._ffi.NULL)
copied_ctx = self._backend._ffi.gc(
copied_ctx, self._backend._lib.HMAC_CTX_free
)
res = self._backend._lib.HMAC_CTX_copy(copied_ctx, self._ctx)
self._backend.openssl_assert(res != 0)
return _HMACContext(
self._backend, self._key, self.algorithm, ctx=copied_ctx
)
def update(self, data: bytes) -> None:
data_ptr = self._backend._ffi.from_buffer(data)
res = self._backend._lib.HMAC_Update(self._ctx, data_ptr, len(data))
self._backend.openssl_assert(res != 0)
def finalize(self) -> bytes:
buf = self._backend._ffi.new(
"unsigned char[]", self._backend._lib.EVP_MAX_MD_SIZE
)
outlen = self._backend._ffi.new("unsigned int *")
res = self._backend._lib.HMAC_Final(self._ctx, buf, outlen)
self._backend.openssl_assert(res != 0)
self._backend.openssl_assert(outlen[0] == self.algorithm.digest_size)
return self._backend._ffi.buffer(buf)[: outlen[0]]
def verify(self, signature: bytes) -> None:
digest = self.finalize()
if not constant_time.bytes_eq(digest, signature):
raise InvalidSignature("Signature did not match digest.")

View File

@@ -0,0 +1,68 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography.exceptions import InvalidSignature
from cryptography.hazmat.primitives import constant_time
_POLY1305_TAG_SIZE = 16
_POLY1305_KEY_SIZE = 32
if typing.TYPE_CHECKING:
from cryptography.hazmat.backends.openssl.backend import Backend
class _Poly1305Context:
def __init__(self, backend: "Backend", key: bytes) -> None:
self._backend = backend
key_ptr = self._backend._ffi.from_buffer(key)
# This function copies the key into OpenSSL-owned memory so we don't
# need to retain it ourselves
evp_pkey = self._backend._lib.EVP_PKEY_new_raw_private_key(
self._backend._lib.NID_poly1305,
self._backend._ffi.NULL,
key_ptr,
len(key),
)
self._backend.openssl_assert(evp_pkey != self._backend._ffi.NULL)
self._evp_pkey = self._backend._ffi.gc(
evp_pkey, self._backend._lib.EVP_PKEY_free
)
ctx = self._backend._lib.EVP_MD_CTX_new()
self._backend.openssl_assert(ctx != self._backend._ffi.NULL)
self._ctx = self._backend._ffi.gc(
ctx, self._backend._lib.EVP_MD_CTX_free
)
res = self._backend._lib.EVP_DigestSignInit(
self._ctx,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
self._evp_pkey,
)
self._backend.openssl_assert(res == 1)
def update(self, data: bytes) -> None:
data_ptr = self._backend._ffi.from_buffer(data)
res = self._backend._lib.EVP_DigestSignUpdate(
self._ctx, data_ptr, len(data)
)
self._backend.openssl_assert(res != 0)
def finalize(self) -> bytes:
buf = self._backend._ffi.new("unsigned char[]", _POLY1305_TAG_SIZE)
outlen = self._backend._ffi.new("size_t *", _POLY1305_TAG_SIZE)
res = self._backend._lib.EVP_DigestSignFinal(self._ctx, buf, outlen)
self._backend.openssl_assert(res != 0)
self._backend.openssl_assert(outlen[0] == _POLY1305_TAG_SIZE)
return self._backend._ffi.buffer(buf)[: outlen[0]]
def verify(self, tag: bytes) -> None:
mac = self.finalize()
if not constant_time.bytes_eq(mac, tag):
raise InvalidSignature("Value did not match computed tag.")

View File

@@ -0,0 +1,567 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography.exceptions import (
InvalidSignature,
UnsupportedAlgorithm,
_Reasons,
)
from cryptography.hazmat.backends.openssl.utils import (
_calculate_digest_and_algorithm,
)
from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric import (
utils as asym_utils,
)
from cryptography.hazmat.primitives.asymmetric.padding import (
AsymmetricPadding,
MGF1,
OAEP,
PKCS1v15,
PSS,
_Auto,
_DigestLength,
_MaxLength,
calculate_max_pss_salt_length,
)
from cryptography.hazmat.primitives.asymmetric.rsa import (
RSAPrivateKey,
RSAPrivateNumbers,
RSAPublicKey,
RSAPublicNumbers,
)
if typing.TYPE_CHECKING:
from cryptography.hazmat.backends.openssl.backend import Backend
def _get_rsa_pss_salt_length(
backend: "Backend",
pss: PSS,
key: typing.Union[RSAPrivateKey, RSAPublicKey],
hash_algorithm: hashes.HashAlgorithm,
) -> int:
salt = pss._salt_length
if isinstance(salt, _MaxLength):
return calculate_max_pss_salt_length(key, hash_algorithm)
elif isinstance(salt, _DigestLength):
return hash_algorithm.digest_size
elif isinstance(salt, _Auto):
if isinstance(key, RSAPrivateKey):
raise ValueError(
"PSS salt length can only be set to AUTO when verifying"
)
return backend._lib.RSA_PSS_SALTLEN_AUTO
else:
return salt
def _enc_dec_rsa(
backend: "Backend",
key: typing.Union["_RSAPrivateKey", "_RSAPublicKey"],
data: bytes,
padding: AsymmetricPadding,
) -> bytes:
if not isinstance(padding, AsymmetricPadding):
raise TypeError("Padding must be an instance of AsymmetricPadding.")
if isinstance(padding, PKCS1v15):
padding_enum = backend._lib.RSA_PKCS1_PADDING
elif isinstance(padding, OAEP):
padding_enum = backend._lib.RSA_PKCS1_OAEP_PADDING
if not isinstance(padding._mgf, MGF1):
raise UnsupportedAlgorithm(
"Only MGF1 is supported by this backend.",
_Reasons.UNSUPPORTED_MGF,
)
if not backend.rsa_padding_supported(padding):
raise UnsupportedAlgorithm(
"This combination of padding and hash algorithm is not "
"supported by this backend.",
_Reasons.UNSUPPORTED_PADDING,
)
else:
raise UnsupportedAlgorithm(
"{} is not supported by this backend.".format(padding.name),
_Reasons.UNSUPPORTED_PADDING,
)
return _enc_dec_rsa_pkey_ctx(backend, key, data, padding_enum, padding)
def _enc_dec_rsa_pkey_ctx(
backend: "Backend",
key: typing.Union["_RSAPrivateKey", "_RSAPublicKey"],
data: bytes,
padding_enum: int,
padding: AsymmetricPadding,
) -> bytes:
init: typing.Callable[[typing.Any], int]
crypt: typing.Callable[[typing.Any, typing.Any, int, bytes, int], int]
if isinstance(key, _RSAPublicKey):
init = backend._lib.EVP_PKEY_encrypt_init
crypt = backend._lib.EVP_PKEY_encrypt
else:
init = backend._lib.EVP_PKEY_decrypt_init
crypt = backend._lib.EVP_PKEY_decrypt
pkey_ctx = backend._lib.EVP_PKEY_CTX_new(key._evp_pkey, backend._ffi.NULL)
backend.openssl_assert(pkey_ctx != backend._ffi.NULL)
pkey_ctx = backend._ffi.gc(pkey_ctx, backend._lib.EVP_PKEY_CTX_free)
res = init(pkey_ctx)
backend.openssl_assert(res == 1)
res = backend._lib.EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, padding_enum)
backend.openssl_assert(res > 0)
buf_size = backend._lib.EVP_PKEY_size(key._evp_pkey)
backend.openssl_assert(buf_size > 0)
if isinstance(padding, OAEP):
mgf1_md = backend._evp_md_non_null_from_algorithm(
padding._mgf._algorithm
)
res = backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1_md)
backend.openssl_assert(res > 0)
oaep_md = backend._evp_md_non_null_from_algorithm(padding._algorithm)
res = backend._lib.EVP_PKEY_CTX_set_rsa_oaep_md(pkey_ctx, oaep_md)
backend.openssl_assert(res > 0)
if (
isinstance(padding, OAEP)
and padding._label is not None
and len(padding._label) > 0
):
# set0_rsa_oaep_label takes ownership of the char * so we need to
# copy it into some new memory
labelptr = backend._lib.OPENSSL_malloc(len(padding._label))
backend.openssl_assert(labelptr != backend._ffi.NULL)
backend._ffi.memmove(labelptr, padding._label, len(padding._label))
res = backend._lib.EVP_PKEY_CTX_set0_rsa_oaep_label(
pkey_ctx, labelptr, len(padding._label)
)
backend.openssl_assert(res == 1)
outlen = backend._ffi.new("size_t *", buf_size)
buf = backend._ffi.new("unsigned char[]", buf_size)
# Everything from this line onwards is written with the goal of being as
# constant-time as is practical given the constraints of Python and our
# API. See Bleichenbacher's '98 attack on RSA, and its many many variants.
# As such, you should not attempt to change this (particularly to "clean it
# up") without understanding why it was written this way (see
# Chesterton's Fence), and without measuring to verify you have not
# introduced observable time differences.
res = crypt(pkey_ctx, buf, outlen, data, len(data))
resbuf = backend._ffi.buffer(buf)[: outlen[0]]
backend._lib.ERR_clear_error()
if res <= 0:
raise ValueError("Encryption/decryption failed.")
return resbuf
def _rsa_sig_determine_padding(
backend: "Backend",
key: typing.Union["_RSAPrivateKey", "_RSAPublicKey"],
padding: AsymmetricPadding,
algorithm: typing.Optional[hashes.HashAlgorithm],
) -> int:
if not isinstance(padding, AsymmetricPadding):
raise TypeError("Expected provider of AsymmetricPadding.")
pkey_size = backend._lib.EVP_PKEY_size(key._evp_pkey)
backend.openssl_assert(pkey_size > 0)
if isinstance(padding, PKCS1v15):
# Hash algorithm is ignored for PKCS1v15-padding, may be None.
padding_enum = backend._lib.RSA_PKCS1_PADDING
elif isinstance(padding, PSS):
if not isinstance(padding._mgf, MGF1):
raise UnsupportedAlgorithm(
"Only MGF1 is supported by this backend.",
_Reasons.UNSUPPORTED_MGF,
)
# PSS padding requires a hash algorithm
if not isinstance(algorithm, hashes.HashAlgorithm):
raise TypeError("Expected instance of hashes.HashAlgorithm.")
# Size of key in bytes - 2 is the maximum
# PSS signature length (salt length is checked later)
if pkey_size - algorithm.digest_size - 2 < 0:
raise ValueError(
"Digest too large for key size. Use a larger "
"key or different digest."
)
padding_enum = backend._lib.RSA_PKCS1_PSS_PADDING
else:
raise UnsupportedAlgorithm(
"{} is not supported by this backend.".format(padding.name),
_Reasons.UNSUPPORTED_PADDING,
)
return padding_enum
# Hash algorithm can be absent (None) to initialize the context without setting
# any message digest algorithm. This is currently only valid for the PKCS1v15
# padding type, where it means that the signature data is encoded/decoded
# as provided, without being wrapped in a DigestInfo structure.
def _rsa_sig_setup(
backend: "Backend",
padding: AsymmetricPadding,
algorithm: typing.Optional[hashes.HashAlgorithm],
key: typing.Union["_RSAPublicKey", "_RSAPrivateKey"],
init_func: typing.Callable[[typing.Any], int],
):
padding_enum = _rsa_sig_determine_padding(backend, key, padding, algorithm)
pkey_ctx = backend._lib.EVP_PKEY_CTX_new(key._evp_pkey, backend._ffi.NULL)
backend.openssl_assert(pkey_ctx != backend._ffi.NULL)
pkey_ctx = backend._ffi.gc(pkey_ctx, backend._lib.EVP_PKEY_CTX_free)
res = init_func(pkey_ctx)
if res != 1:
errors = backend._consume_errors()
raise ValueError("Unable to sign/verify with this key", errors)
if algorithm is not None:
evp_md = backend._evp_md_non_null_from_algorithm(algorithm)
res = backend._lib.EVP_PKEY_CTX_set_signature_md(pkey_ctx, evp_md)
if res <= 0:
backend._consume_errors()
raise UnsupportedAlgorithm(
"{} is not supported by this backend for RSA signing.".format(
algorithm.name
),
_Reasons.UNSUPPORTED_HASH,
)
res = backend._lib.EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, padding_enum)
if res <= 0:
backend._consume_errors()
raise UnsupportedAlgorithm(
"{} is not supported for the RSA signature operation.".format(
padding.name
),
_Reasons.UNSUPPORTED_PADDING,
)
if isinstance(padding, PSS):
assert isinstance(algorithm, hashes.HashAlgorithm)
res = backend._lib.EVP_PKEY_CTX_set_rsa_pss_saltlen(
pkey_ctx,
_get_rsa_pss_salt_length(backend, padding, key, algorithm),
)
backend.openssl_assert(res > 0)
mgf1_md = backend._evp_md_non_null_from_algorithm(
padding._mgf._algorithm
)
res = backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1_md)
backend.openssl_assert(res > 0)
return pkey_ctx
def _rsa_sig_sign(
backend: "Backend",
padding: AsymmetricPadding,
algorithm: hashes.HashAlgorithm,
private_key: "_RSAPrivateKey",
data: bytes,
) -> bytes:
pkey_ctx = _rsa_sig_setup(
backend,
padding,
algorithm,
private_key,
backend._lib.EVP_PKEY_sign_init,
)
buflen = backend._ffi.new("size_t *")
res = backend._lib.EVP_PKEY_sign(
pkey_ctx, backend._ffi.NULL, buflen, data, len(data)
)
backend.openssl_assert(res == 1)
buf = backend._ffi.new("unsigned char[]", buflen[0])
res = backend._lib.EVP_PKEY_sign(pkey_ctx, buf, buflen, data, len(data))
if res != 1:
errors = backend._consume_errors_with_text()
raise ValueError(
"Digest or salt length too long for key size. Use a larger key "
"or shorter salt length if you are specifying a PSS salt",
errors,
)
return backend._ffi.buffer(buf)[:]
def _rsa_sig_verify(
backend: "Backend",
padding: AsymmetricPadding,
algorithm: hashes.HashAlgorithm,
public_key: "_RSAPublicKey",
signature: bytes,
data: bytes,
) -> None:
pkey_ctx = _rsa_sig_setup(
backend,
padding,
algorithm,
public_key,
backend._lib.EVP_PKEY_verify_init,
)
res = backend._lib.EVP_PKEY_verify(
pkey_ctx, signature, len(signature), data, len(data)
)
# The previous call can return negative numbers in the event of an
# error. This is not a signature failure but we need to fail if it
# occurs.
backend.openssl_assert(res >= 0)
if res == 0:
backend._consume_errors()
raise InvalidSignature
def _rsa_sig_recover(
backend: "Backend",
padding: AsymmetricPadding,
algorithm: typing.Optional[hashes.HashAlgorithm],
public_key: "_RSAPublicKey",
signature: bytes,
) -> bytes:
pkey_ctx = _rsa_sig_setup(
backend,
padding,
algorithm,
public_key,
backend._lib.EVP_PKEY_verify_recover_init,
)
# Attempt to keep the rest of the code in this function as constant/time
# as possible. See the comment in _enc_dec_rsa_pkey_ctx. Note that the
# buflen parameter is used even though its value may be undefined in the
# error case. Due to the tolerant nature of Python slicing this does not
# trigger any exceptions.
maxlen = backend._lib.EVP_PKEY_size(public_key._evp_pkey)
backend.openssl_assert(maxlen > 0)
buf = backend._ffi.new("unsigned char[]", maxlen)
buflen = backend._ffi.new("size_t *", maxlen)
res = backend._lib.EVP_PKEY_verify_recover(
pkey_ctx, buf, buflen, signature, len(signature)
)
resbuf = backend._ffi.buffer(buf)[: buflen[0]]
backend._lib.ERR_clear_error()
# Assume that all parameter errors are handled during the setup phase and
# any error here is due to invalid signature.
if res != 1:
raise InvalidSignature
return resbuf
class _RSAPrivateKey(RSAPrivateKey):
_evp_pkey: object
_rsa_cdata: object
_key_size: int
def __init__(
self, backend: "Backend", rsa_cdata, evp_pkey, _skip_check_key: bool
):
res: int
# RSA_check_key is slower in OpenSSL 3.0.0 due to improved
# primality checking. In normal use this is unlikely to be a problem
# since users don't load new keys constantly, but for TESTING we've
# added an init arg that allows skipping the checks. You should not
# use this in production code unless you understand the consequences.
if not _skip_check_key:
res = backend._lib.RSA_check_key(rsa_cdata)
if res != 1:
errors = backend._consume_errors_with_text()
raise ValueError("Invalid private key", errors)
# 2 is prime and passes an RSA key check, so we also check
# if p and q are odd just to be safe.
p = backend._ffi.new("BIGNUM **")
q = backend._ffi.new("BIGNUM **")
backend._lib.RSA_get0_factors(rsa_cdata, p, q)
backend.openssl_assert(p[0] != backend._ffi.NULL)
backend.openssl_assert(q[0] != backend._ffi.NULL)
p_odd = backend._lib.BN_is_odd(p[0])
q_odd = backend._lib.BN_is_odd(q[0])
if p_odd != 1 or q_odd != 1:
errors = backend._consume_errors_with_text()
raise ValueError("Invalid private key", errors)
# Blinding is on by default in many versions of OpenSSL, but let's
# just be conservative here.
res = backend._lib.RSA_blinding_on(rsa_cdata, backend._ffi.NULL)
backend.openssl_assert(res == 1)
self._backend = backend
self._rsa_cdata = rsa_cdata
self._evp_pkey = evp_pkey
n = self._backend._ffi.new("BIGNUM **")
self._backend._lib.RSA_get0_key(
self._rsa_cdata,
n,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
)
self._backend.openssl_assert(n[0] != self._backend._ffi.NULL)
self._key_size = self._backend._lib.BN_num_bits(n[0])
@property
def key_size(self) -> int:
return self._key_size
def decrypt(self, ciphertext: bytes, padding: AsymmetricPadding) -> bytes:
key_size_bytes = (self.key_size + 7) // 8
if key_size_bytes != len(ciphertext):
raise ValueError("Ciphertext length must be equal to key size.")
return _enc_dec_rsa(self._backend, self, ciphertext, padding)
def public_key(self) -> RSAPublicKey:
ctx = self._backend._lib.RSAPublicKey_dup(self._rsa_cdata)
self._backend.openssl_assert(ctx != self._backend._ffi.NULL)
ctx = self._backend._ffi.gc(ctx, self._backend._lib.RSA_free)
evp_pkey = self._backend._rsa_cdata_to_evp_pkey(ctx)
return _RSAPublicKey(self._backend, ctx, evp_pkey)
def private_numbers(self) -> RSAPrivateNumbers:
n = self._backend._ffi.new("BIGNUM **")
e = self._backend._ffi.new("BIGNUM **")
d = self._backend._ffi.new("BIGNUM **")
p = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
dmp1 = self._backend._ffi.new("BIGNUM **")
dmq1 = self._backend._ffi.new("BIGNUM **")
iqmp = self._backend._ffi.new("BIGNUM **")
self._backend._lib.RSA_get0_key(self._rsa_cdata, n, e, d)
self._backend.openssl_assert(n[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(e[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(d[0] != self._backend._ffi.NULL)
self._backend._lib.RSA_get0_factors(self._rsa_cdata, p, q)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(q[0] != self._backend._ffi.NULL)
self._backend._lib.RSA_get0_crt_params(
self._rsa_cdata, dmp1, dmq1, iqmp
)
self._backend.openssl_assert(dmp1[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(dmq1[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(iqmp[0] != self._backend._ffi.NULL)
return RSAPrivateNumbers(
p=self._backend._bn_to_int(p[0]),
q=self._backend._bn_to_int(q[0]),
d=self._backend._bn_to_int(d[0]),
dmp1=self._backend._bn_to_int(dmp1[0]),
dmq1=self._backend._bn_to_int(dmq1[0]),
iqmp=self._backend._bn_to_int(iqmp[0]),
public_numbers=RSAPublicNumbers(
e=self._backend._bn_to_int(e[0]),
n=self._backend._bn_to_int(n[0]),
),
)
def private_bytes(
self,
encoding: serialization.Encoding,
format: serialization.PrivateFormat,
encryption_algorithm: serialization.KeySerializationEncryption,
) -> bytes:
return self._backend._private_key_bytes(
encoding,
format,
encryption_algorithm,
self,
self._evp_pkey,
self._rsa_cdata,
)
def sign(
self,
data: bytes,
padding: AsymmetricPadding,
algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm],
) -> bytes:
data, algorithm = _calculate_digest_and_algorithm(data, algorithm)
return _rsa_sig_sign(self._backend, padding, algorithm, self, data)
class _RSAPublicKey(RSAPublicKey):
_evp_pkey: object
_rsa_cdata: object
_key_size: int
def __init__(self, backend: "Backend", rsa_cdata, evp_pkey):
self._backend = backend
self._rsa_cdata = rsa_cdata
self._evp_pkey = evp_pkey
n = self._backend._ffi.new("BIGNUM **")
self._backend._lib.RSA_get0_key(
self._rsa_cdata,
n,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
)
self._backend.openssl_assert(n[0] != self._backend._ffi.NULL)
self._key_size = self._backend._lib.BN_num_bits(n[0])
@property
def key_size(self) -> int:
return self._key_size
def encrypt(self, plaintext: bytes, padding: AsymmetricPadding) -> bytes:
return _enc_dec_rsa(self._backend, self, plaintext, padding)
def public_numbers(self) -> RSAPublicNumbers:
n = self._backend._ffi.new("BIGNUM **")
e = self._backend._ffi.new("BIGNUM **")
self._backend._lib.RSA_get0_key(
self._rsa_cdata, n, e, self._backend._ffi.NULL
)
self._backend.openssl_assert(n[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(e[0] != self._backend._ffi.NULL)
return RSAPublicNumbers(
e=self._backend._bn_to_int(e[0]),
n=self._backend._bn_to_int(n[0]),
)
def public_bytes(
self,
encoding: serialization.Encoding,
format: serialization.PublicFormat,
) -> bytes:
return self._backend._public_key_bytes(
encoding, format, self, self._evp_pkey, self._rsa_cdata
)
def verify(
self,
signature: bytes,
data: bytes,
padding: AsymmetricPadding,
algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm],
) -> None:
data, algorithm = _calculate_digest_and_algorithm(data, algorithm)
_rsa_sig_verify(
self._backend, padding, algorithm, self, signature, data
)
def recover_data_from_signature(
self,
signature: bytes,
padding: AsymmetricPadding,
algorithm: typing.Optional[hashes.HashAlgorithm],
) -> bytes:
if isinstance(algorithm, asym_utils.Prehashed):
raise TypeError(
"Prehashed is only supported in the sign and verify methods. "
"It cannot be used with recover_data_from_signature."
)
return _rsa_sig_recover(
self._backend, padding, algorithm, self, signature
)

View File

@@ -0,0 +1,52 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric.utils import Prehashed
if typing.TYPE_CHECKING:
from cryptography.hazmat.backends.openssl.backend import Backend
def _evp_pkey_derive(backend: "Backend", evp_pkey, peer_public_key) -> bytes:
ctx = backend._lib.EVP_PKEY_CTX_new(evp_pkey, backend._ffi.NULL)
backend.openssl_assert(ctx != backend._ffi.NULL)
ctx = backend._ffi.gc(ctx, backend._lib.EVP_PKEY_CTX_free)
res = backend._lib.EVP_PKEY_derive_init(ctx)
backend.openssl_assert(res == 1)
res = backend._lib.EVP_PKEY_derive_set_peer(ctx, peer_public_key._evp_pkey)
backend.openssl_assert(res == 1)
keylen = backend._ffi.new("size_t *")
res = backend._lib.EVP_PKEY_derive(ctx, backend._ffi.NULL, keylen)
backend.openssl_assert(res == 1)
backend.openssl_assert(keylen[0] > 0)
buf = backend._ffi.new("unsigned char[]", keylen[0])
res = backend._lib.EVP_PKEY_derive(ctx, buf, keylen)
if res != 1:
errors_with_text = backend._consume_errors_with_text()
raise ValueError("Error computing shared key.", errors_with_text)
return backend._ffi.buffer(buf, keylen[0])[:]
def _calculate_digest_and_algorithm(
data: bytes,
algorithm: typing.Union[Prehashed, hashes.HashAlgorithm],
) -> typing.Tuple[bytes, hashes.HashAlgorithm]:
if not isinstance(algorithm, Prehashed):
hash_ctx = hashes.Hash(algorithm)
hash_ctx.update(data)
data = hash_ctx.finalize()
else:
algorithm = algorithm._algorithm
if len(data) != algorithm.digest_size:
raise ValueError(
"The provided data must be the same length as the hash "
"algorithm's digest size."
)
return (data, algorithm)

View File

@@ -0,0 +1,132 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography.hazmat.backends.openssl.utils import _evp_pkey_derive
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric.x25519 import (
X25519PrivateKey,
X25519PublicKey,
)
if typing.TYPE_CHECKING:
from cryptography.hazmat.backends.openssl.backend import Backend
_X25519_KEY_SIZE = 32
class _X25519PublicKey(X25519PublicKey):
def __init__(self, backend: "Backend", evp_pkey):
self._backend = backend
self._evp_pkey = evp_pkey
def public_bytes(
self,
encoding: serialization.Encoding,
format: serialization.PublicFormat,
) -> bytes:
if (
encoding is serialization.Encoding.Raw
or format is serialization.PublicFormat.Raw
):
if (
encoding is not serialization.Encoding.Raw
or format is not serialization.PublicFormat.Raw
):
raise ValueError(
"When using Raw both encoding and format must be Raw"
)
return self._raw_public_bytes()
return self._backend._public_key_bytes(
encoding, format, self, self._evp_pkey, None
)
def _raw_public_bytes(self) -> bytes:
ucharpp = self._backend._ffi.new("unsigned char **")
res = self._backend._lib.EVP_PKEY_get1_tls_encodedpoint(
self._evp_pkey, ucharpp
)
self._backend.openssl_assert(res == 32)
self._backend.openssl_assert(ucharpp[0] != self._backend._ffi.NULL)
data = self._backend._ffi.gc(
ucharpp[0], self._backend._lib.OPENSSL_free
)
return self._backend._ffi.buffer(data, res)[:]
class _X25519PrivateKey(X25519PrivateKey):
def __init__(self, backend: "Backend", evp_pkey):
self._backend = backend
self._evp_pkey = evp_pkey
def public_key(self) -> X25519PublicKey:
bio = self._backend._create_mem_bio_gc()
res = self._backend._lib.i2d_PUBKEY_bio(bio, self._evp_pkey)
self._backend.openssl_assert(res == 1)
evp_pkey = self._backend._lib.d2i_PUBKEY_bio(
bio, self._backend._ffi.NULL
)
self._backend.openssl_assert(evp_pkey != self._backend._ffi.NULL)
evp_pkey = self._backend._ffi.gc(
evp_pkey, self._backend._lib.EVP_PKEY_free
)
return _X25519PublicKey(self._backend, evp_pkey)
def exchange(self, peer_public_key: X25519PublicKey) -> bytes:
if not isinstance(peer_public_key, X25519PublicKey):
raise TypeError("peer_public_key must be X25519PublicKey.")
return _evp_pkey_derive(self._backend, self._evp_pkey, peer_public_key)
def private_bytes(
self,
encoding: serialization.Encoding,
format: serialization.PrivateFormat,
encryption_algorithm: serialization.KeySerializationEncryption,
) -> bytes:
if (
encoding is serialization.Encoding.Raw
or format is serialization.PublicFormat.Raw
):
if (
format is not serialization.PrivateFormat.Raw
or encoding is not serialization.Encoding.Raw
or not isinstance(
encryption_algorithm, serialization.NoEncryption
)
):
raise ValueError(
"When using Raw both encoding and format must be Raw "
"and encryption_algorithm must be NoEncryption()"
)
return self._raw_private_bytes()
return self._backend._private_key_bytes(
encoding, format, encryption_algorithm, self, self._evp_pkey, None
)
def _raw_private_bytes(self) -> bytes:
# When we drop support for CRYPTOGRAPHY_OPENSSL_LESS_THAN_111 we can
# switch this to EVP_PKEY_new_raw_private_key
# The trick we use here is serializing to a PKCS8 key and just
# using the last 32 bytes, which is the key itself.
bio = self._backend._create_mem_bio_gc()
res = self._backend._lib.i2d_PKCS8PrivateKey_bio(
bio,
self._evp_pkey,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
0,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
)
self._backend.openssl_assert(res == 1)
pkcs8 = self._backend._read_mem_bio(bio)
self._backend.openssl_assert(len(pkcs8) == 48)
return pkcs8[-_X25519_KEY_SIZE:]

View File

@@ -0,0 +1,117 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography.hazmat.backends.openssl.utils import _evp_pkey_derive
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric.x448 import (
X448PrivateKey,
X448PublicKey,
)
if typing.TYPE_CHECKING:
from cryptography.hazmat.backends.openssl.backend import Backend
_X448_KEY_SIZE = 56
class _X448PublicKey(X448PublicKey):
def __init__(self, backend: "Backend", evp_pkey):
self._backend = backend
self._evp_pkey = evp_pkey
def public_bytes(
self,
encoding: serialization.Encoding,
format: serialization.PublicFormat,
) -> bytes:
if (
encoding is serialization.Encoding.Raw
or format is serialization.PublicFormat.Raw
):
if (
encoding is not serialization.Encoding.Raw
or format is not serialization.PublicFormat.Raw
):
raise ValueError(
"When using Raw both encoding and format must be Raw"
)
return self._raw_public_bytes()
return self._backend._public_key_bytes(
encoding, format, self, self._evp_pkey, None
)
def _raw_public_bytes(self) -> bytes:
buf = self._backend._ffi.new("unsigned char []", _X448_KEY_SIZE)
buflen = self._backend._ffi.new("size_t *", _X448_KEY_SIZE)
res = self._backend._lib.EVP_PKEY_get_raw_public_key(
self._evp_pkey, buf, buflen
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _X448_KEY_SIZE)
return self._backend._ffi.buffer(buf, _X448_KEY_SIZE)[:]
class _X448PrivateKey(X448PrivateKey):
def __init__(self, backend: "Backend", evp_pkey):
self._backend = backend
self._evp_pkey = evp_pkey
def public_key(self) -> X448PublicKey:
buf = self._backend._ffi.new("unsigned char []", _X448_KEY_SIZE)
buflen = self._backend._ffi.new("size_t *", _X448_KEY_SIZE)
res = self._backend._lib.EVP_PKEY_get_raw_public_key(
self._evp_pkey, buf, buflen
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _X448_KEY_SIZE)
public_bytes = self._backend._ffi.buffer(buf)[:]
return self._backend.x448_load_public_bytes(public_bytes)
def exchange(self, peer_public_key: X448PublicKey) -> bytes:
if not isinstance(peer_public_key, X448PublicKey):
raise TypeError("peer_public_key must be X448PublicKey.")
return _evp_pkey_derive(self._backend, self._evp_pkey, peer_public_key)
def private_bytes(
self,
encoding: serialization.Encoding,
format: serialization.PrivateFormat,
encryption_algorithm: serialization.KeySerializationEncryption,
) -> bytes:
if (
encoding is serialization.Encoding.Raw
or format is serialization.PublicFormat.Raw
):
if (
format is not serialization.PrivateFormat.Raw
or encoding is not serialization.Encoding.Raw
or not isinstance(
encryption_algorithm, serialization.NoEncryption
)
):
raise ValueError(
"When using Raw both encoding and format must be Raw "
"and encryption_algorithm must be NoEncryption()"
)
return self._raw_private_bytes()
return self._backend._private_key_bytes(
encoding, format, encryption_algorithm, self, self._evp_pkey, None
)
def _raw_private_bytes(self) -> bytes:
buf = self._backend._ffi.new("unsigned char []", _X448_KEY_SIZE)
buflen = self._backend._ffi.new("size_t *", _X448_KEY_SIZE)
res = self._backend._lib.EVP_PKEY_get_raw_private_key(
self._evp_pkey, buf, buflen
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _X448_KEY_SIZE)
return self._backend._ffi.buffer(buf, _X448_KEY_SIZE)[:]

View File

@@ -0,0 +1,45 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import warnings
from cryptography import utils, x509
# This exists for pyOpenSSL compatibility and SHOULD NOT BE USED
# WE WILL REMOVE THIS VERY SOON.
def _Certificate(backend, x509) -> x509.Certificate: # noqa: N802
warnings.warn(
"This version of cryptography contains a temporary pyOpenSSL "
"fallback path. Upgrade pyOpenSSL now.",
utils.DeprecatedIn35,
)
return backend._ossl2cert(x509)
# This exists for pyOpenSSL compatibility and SHOULD NOT BE USED
# WE WILL REMOVE THIS VERY SOON.
def _CertificateSigningRequest( # noqa: N802
backend, x509_req
) -> x509.CertificateSigningRequest:
warnings.warn(
"This version of cryptography contains a temporary pyOpenSSL "
"fallback path. Upgrade pyOpenSSL now.",
utils.DeprecatedIn35,
)
return backend._ossl2csr(x509_req)
# This exists for pyOpenSSL compatibility and SHOULD NOT BE USED
# WE WILL REMOVE THIS VERY SOON.
def _CertificateRevocationList( # noqa: N802
backend, x509_crl
) -> x509.CertificateRevocationList:
warnings.warn(
"This version of cryptography contains a temporary pyOpenSSL "
"fallback path. Upgrade pyOpenSSL now.",
utils.DeprecatedIn35,
)
return backend._ossl2crl(x509_crl)

View File

@@ -0,0 +1,3 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.

View File

@@ -0,0 +1,3 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.

View File

@@ -0,0 +1,367 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
def cryptography_has_ec2m() -> typing.List[str]:
return [
"EC_POINT_get_affine_coordinates_GF2m",
]
def cryptography_has_ssl3_method() -> typing.List[str]:
return [
"SSLv3_method",
"SSLv3_client_method",
"SSLv3_server_method",
]
def cryptography_has_110_verification_params() -> typing.List[str]:
return ["X509_CHECK_FLAG_NEVER_CHECK_SUBJECT"]
def cryptography_has_set_cert_cb() -> typing.List[str]:
return [
"SSL_CTX_set_cert_cb",
"SSL_set_cert_cb",
]
def cryptography_has_ssl_st() -> typing.List[str]:
return [
"SSL_ST_BEFORE",
"SSL_ST_OK",
"SSL_ST_INIT",
"SSL_ST_RENEGOTIATE",
]
def cryptography_has_tls_st() -> typing.List[str]:
return [
"TLS_ST_BEFORE",
"TLS_ST_OK",
]
def cryptography_has_scrypt() -> typing.List[str]:
return [
"EVP_PBE_scrypt",
]
def cryptography_has_evp_pkey_dhx() -> typing.List[str]:
return [
"EVP_PKEY_DHX",
]
def cryptography_has_mem_functions() -> typing.List[str]:
return [
"Cryptography_CRYPTO_set_mem_functions",
]
def cryptography_has_x509_store_ctx_get_issuer() -> typing.List[str]:
return [
"X509_STORE_get_get_issuer",
"X509_STORE_set_get_issuer",
]
def cryptography_has_ed448() -> typing.List[str]:
return [
"EVP_PKEY_ED448",
"NID_ED448",
]
def cryptography_has_ed25519() -> typing.List[str]:
return [
"NID_ED25519",
"EVP_PKEY_ED25519",
]
def cryptography_has_poly1305() -> typing.List[str]:
return [
"NID_poly1305",
"EVP_PKEY_POLY1305",
]
def cryptography_has_oneshot_evp_digest_sign_verify() -> typing.List[str]:
return [
"EVP_DigestSign",
"EVP_DigestVerify",
]
def cryptography_has_evp_digestfinal_xof() -> typing.List[str]:
return [
"EVP_DigestFinalXOF",
]
def cryptography_has_evp_pkey_get_set_tls_encodedpoint() -> typing.List[str]:
return [
"EVP_PKEY_get1_tls_encodedpoint",
"EVP_PKEY_set1_tls_encodedpoint",
]
def cryptography_has_fips() -> typing.List[str]:
return [
"FIPS_mode_set",
"FIPS_mode",
]
def cryptography_has_psk() -> typing.List[str]:
return [
"SSL_CTX_use_psk_identity_hint",
"SSL_CTX_set_psk_server_callback",
"SSL_CTX_set_psk_client_callback",
]
def cryptography_has_psk_tlsv13() -> typing.List[str]:
return [
"SSL_CTX_set_psk_find_session_callback",
"SSL_CTX_set_psk_use_session_callback",
"Cryptography_SSL_SESSION_new",
"SSL_CIPHER_find",
"SSL_SESSION_set1_master_key",
"SSL_SESSION_set_cipher",
"SSL_SESSION_set_protocol_version",
]
def cryptography_has_custom_ext() -> typing.List[str]:
return [
"SSL_CTX_add_client_custom_ext",
"SSL_CTX_add_server_custom_ext",
"SSL_extension_supported",
]
def cryptography_has_openssl_cleanup() -> typing.List[str]:
return [
"OPENSSL_cleanup",
]
def cryptography_has_tlsv13() -> typing.List[str]:
return [
"TLS1_3_VERSION",
"SSL_OP_NO_TLSv1_3",
]
def cryptography_has_tlsv13_functions() -> typing.List[str]:
return [
"SSL_VERIFY_POST_HANDSHAKE",
"SSL_CTX_set_ciphersuites",
"SSL_verify_client_post_handshake",
"SSL_CTX_set_post_handshake_auth",
"SSL_set_post_handshake_auth",
"SSL_SESSION_get_max_early_data",
"SSL_write_early_data",
"SSL_read_early_data",
"SSL_CTX_set_max_early_data",
]
def cryptography_has_keylog() -> typing.List[str]:
return [
"SSL_CTX_set_keylog_callback",
"SSL_CTX_get_keylog_callback",
]
def cryptography_has_raw_key() -> typing.List[str]:
return [
"EVP_PKEY_new_raw_private_key",
"EVP_PKEY_new_raw_public_key",
"EVP_PKEY_get_raw_private_key",
"EVP_PKEY_get_raw_public_key",
]
def cryptography_has_engine() -> typing.List[str]:
return [
"ENGINE_by_id",
"ENGINE_init",
"ENGINE_finish",
"ENGINE_get_default_RAND",
"ENGINE_set_default_RAND",
"ENGINE_unregister_RAND",
"ENGINE_ctrl_cmd",
"ENGINE_free",
"ENGINE_get_name",
"Cryptography_add_osrandom_engine",
"ENGINE_ctrl_cmd_string",
"ENGINE_load_builtin_engines",
"ENGINE_load_private_key",
"ENGINE_load_public_key",
"SSL_CTX_set_client_cert_engine",
]
def cryptography_has_verified_chain() -> typing.List[str]:
return [
"SSL_get0_verified_chain",
]
def cryptography_has_srtp() -> typing.List[str]:
return [
"SSL_CTX_set_tlsext_use_srtp",
"SSL_set_tlsext_use_srtp",
"SSL_get_selected_srtp_profile",
]
def cryptography_has_get_proto_version() -> typing.List[str]:
return [
"SSL_CTX_get_min_proto_version",
"SSL_CTX_get_max_proto_version",
"SSL_get_min_proto_version",
"SSL_get_max_proto_version",
]
def cryptography_has_providers() -> typing.List[str]:
return [
"OSSL_PROVIDER_load",
"OSSL_PROVIDER_unload",
"ERR_LIB_PROV",
"PROV_R_WRONG_FINAL_BLOCK_LENGTH",
"PROV_R_BAD_DECRYPT",
]
def cryptography_has_op_no_renegotiation() -> typing.List[str]:
return [
"SSL_OP_NO_RENEGOTIATION",
]
def cryptography_has_dtls_get_data_mtu() -> typing.List[str]:
return [
"DTLS_get_data_mtu",
]
def cryptography_has_300_fips() -> typing.List[str]:
return [
"EVP_default_properties_is_fips_enabled",
"EVP_default_properties_enable_fips",
]
def cryptography_has_ssl_cookie() -> typing.List[str]:
return [
"SSL_OP_COOKIE_EXCHANGE",
"DTLSv1_listen",
"SSL_CTX_set_cookie_generate_cb",
"SSL_CTX_set_cookie_verify_cb",
]
def cryptography_has_pkcs7_funcs() -> typing.List[str]:
return [
"SMIME_write_PKCS7",
"PEM_write_bio_PKCS7_stream",
"PKCS7_sign_add_signer",
"PKCS7_final",
"PKCS7_verify",
"SMIME_read_PKCS7",
"PKCS7_get0_signers",
]
def cryptography_has_bn_flags() -> typing.List[str]:
return [
"BN_FLG_CONSTTIME",
"BN_set_flags",
"BN_prime_checks_for_size",
]
def cryptography_has_evp_pkey_dh() -> typing.List[str]:
return [
"EVP_PKEY_set1_DH",
]
def cryptography_has_300_evp_cipher() -> typing.List[str]:
return ["EVP_CIPHER_fetch", "EVP_CIPHER_free"]
def cryptography_has_unexpected_eof_while_reading() -> typing.List[str]:
return ["SSL_R_UNEXPECTED_EOF_WHILE_READING"]
# This is a mapping of
# {condition: function-returning-names-dependent-on-that-condition} so we can
# loop over them and delete unsupported names at runtime. It will be removed
# when cffi supports #if in cdef. We use functions instead of just a dict of
# lists so we can use coverage to measure which are used.
CONDITIONAL_NAMES = {
"Cryptography_HAS_EC2M": cryptography_has_ec2m,
"Cryptography_HAS_SSL3_METHOD": cryptography_has_ssl3_method,
"Cryptography_HAS_110_VERIFICATION_PARAMS": (
cryptography_has_110_verification_params
),
"Cryptography_HAS_SET_CERT_CB": cryptography_has_set_cert_cb,
"Cryptography_HAS_SSL_ST": cryptography_has_ssl_st,
"Cryptography_HAS_TLS_ST": cryptography_has_tls_st,
"Cryptography_HAS_SCRYPT": cryptography_has_scrypt,
"Cryptography_HAS_EVP_PKEY_DHX": cryptography_has_evp_pkey_dhx,
"Cryptography_HAS_MEM_FUNCTIONS": cryptography_has_mem_functions,
"Cryptography_HAS_X509_STORE_CTX_GET_ISSUER": (
cryptography_has_x509_store_ctx_get_issuer
),
"Cryptography_HAS_ED448": cryptography_has_ed448,
"Cryptography_HAS_ED25519": cryptography_has_ed25519,
"Cryptography_HAS_POLY1305": cryptography_has_poly1305,
"Cryptography_HAS_ONESHOT_EVP_DIGEST_SIGN_VERIFY": (
cryptography_has_oneshot_evp_digest_sign_verify
),
"Cryptography_HAS_EVP_PKEY_get_set_tls_encodedpoint": (
cryptography_has_evp_pkey_get_set_tls_encodedpoint
),
"Cryptography_HAS_FIPS": cryptography_has_fips,
"Cryptography_HAS_PSK": cryptography_has_psk,
"Cryptography_HAS_PSK_TLSv1_3": cryptography_has_psk_tlsv13,
"Cryptography_HAS_CUSTOM_EXT": cryptography_has_custom_ext,
"Cryptography_HAS_OPENSSL_CLEANUP": cryptography_has_openssl_cleanup,
"Cryptography_HAS_TLSv1_3": cryptography_has_tlsv13,
"Cryptography_HAS_TLSv1_3_FUNCTIONS": cryptography_has_tlsv13_functions,
"Cryptography_HAS_KEYLOG": cryptography_has_keylog,
"Cryptography_HAS_RAW_KEY": cryptography_has_raw_key,
"Cryptography_HAS_EVP_DIGESTFINAL_XOF": (
cryptography_has_evp_digestfinal_xof
),
"Cryptography_HAS_ENGINE": cryptography_has_engine,
"Cryptography_HAS_VERIFIED_CHAIN": cryptography_has_verified_chain,
"Cryptography_HAS_SRTP": cryptography_has_srtp,
"Cryptography_HAS_GET_PROTO_VERSION": cryptography_has_get_proto_version,
"Cryptography_HAS_PROVIDERS": cryptography_has_providers,
"Cryptography_HAS_OP_NO_RENEGOTIATION": (
cryptography_has_op_no_renegotiation
),
"Cryptography_HAS_DTLS_GET_DATA_MTU": cryptography_has_dtls_get_data_mtu,
"Cryptography_HAS_300_FIPS": cryptography_has_300_fips,
"Cryptography_HAS_SSL_COOKIE": cryptography_has_ssl_cookie,
"Cryptography_HAS_PKCS7_FUNCS": cryptography_has_pkcs7_funcs,
"Cryptography_HAS_BN_FLAGS": cryptography_has_bn_flags,
"Cryptography_HAS_EVP_PKEY_DH": cryptography_has_evp_pkey_dh,
"Cryptography_HAS_300_EVP_CIPHER": cryptography_has_300_evp_cipher,
"Cryptography_HAS_UNEXPECTED_EOF_WHILE_READING": (
cryptography_has_unexpected_eof_while_reading
),
}

View File

@@ -0,0 +1,230 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import threading
import types
import typing
import warnings
import cryptography
from cryptography import utils
from cryptography.exceptions import InternalError
from cryptography.hazmat.bindings._openssl import ffi, lib
from cryptography.hazmat.bindings.openssl._conditional import CONDITIONAL_NAMES
_OpenSSLErrorWithText = typing.NamedTuple(
"_OpenSSLErrorWithText",
[("code", int), ("lib", int), ("reason", int), ("reason_text", bytes)],
)
class _OpenSSLError:
def __init__(self, code: int, lib: int, reason: int):
self._code = code
self._lib = lib
self._reason = reason
def _lib_reason_match(self, lib: int, reason: int) -> bool:
return lib == self.lib and reason == self.reason
@property
def code(self) -> int:
return self._code
@property
def lib(self) -> int:
return self._lib
@property
def reason(self) -> int:
return self._reason
def _consume_errors(lib) -> typing.List[_OpenSSLError]:
errors = []
while True:
code: int = lib.ERR_get_error()
if code == 0:
break
err_lib: int = lib.ERR_GET_LIB(code)
err_reason: int = lib.ERR_GET_REASON(code)
errors.append(_OpenSSLError(code, err_lib, err_reason))
return errors
def _errors_with_text(
errors: typing.List[_OpenSSLError],
) -> typing.List[_OpenSSLErrorWithText]:
errors_with_text = []
for err in errors:
buf = ffi.new("char[]", 256)
lib.ERR_error_string_n(err.code, buf, len(buf))
err_text_reason: bytes = ffi.string(buf)
errors_with_text.append(
_OpenSSLErrorWithText(
err.code, err.lib, err.reason, err_text_reason
)
)
return errors_with_text
def _consume_errors_with_text(lib):
return _errors_with_text(_consume_errors(lib))
def _openssl_assert(
lib, ok: bool, errors: typing.Optional[typing.List[_OpenSSLError]] = None
) -> None:
if not ok:
if errors is None:
errors = _consume_errors(lib)
errors_with_text = _errors_with_text(errors)
raise InternalError(
"Unknown OpenSSL error. This error is commonly encountered when "
"another library is not cleaning up the OpenSSL error stack. If "
"you are using cryptography with another library that uses "
"OpenSSL try disabling it before reporting a bug. Otherwise "
"please file an issue at https://github.com/pyca/cryptography/"
"issues with information on how to reproduce "
"this. ({0!r})".format(errors_with_text),
errors_with_text,
)
def build_conditional_library(lib, conditional_names):
conditional_lib = types.ModuleType("lib")
conditional_lib._original_lib = lib # type: ignore[attr-defined]
excluded_names = set()
for condition, names_cb in conditional_names.items():
if not getattr(lib, condition):
excluded_names.update(names_cb())
for attr in dir(lib):
if attr not in excluded_names:
setattr(conditional_lib, attr, getattr(lib, attr))
return conditional_lib
class Binding:
"""
OpenSSL API wrapper.
"""
lib: typing.ClassVar = None
ffi = ffi
_lib_loaded = False
_init_lock = threading.Lock()
_legacy_provider: typing.Any = None
_default_provider: typing.Any = None
def __init__(self):
self._ensure_ffi_initialized()
def _enable_fips(self) -> None:
# This function enables FIPS mode for OpenSSL 3.0.0 on installs that
# have the FIPS provider installed properly.
_openssl_assert(self.lib, self.lib.CRYPTOGRAPHY_OPENSSL_300_OR_GREATER)
self._base_provider = self.lib.OSSL_PROVIDER_load(
self.ffi.NULL, b"base"
)
_openssl_assert(self.lib, self._base_provider != self.ffi.NULL)
self.lib._fips_provider = self.lib.OSSL_PROVIDER_load(
self.ffi.NULL, b"fips"
)
_openssl_assert(self.lib, self.lib._fips_provider != self.ffi.NULL)
res = self.lib.EVP_default_properties_enable_fips(self.ffi.NULL, 1)
_openssl_assert(self.lib, res == 1)
@classmethod
def _register_osrandom_engine(cls):
# Clear any errors extant in the queue before we start. In many
# scenarios other things may be interacting with OpenSSL in the same
# process space and it has proven untenable to assume that they will
# reliably clear the error queue. Once we clear it here we will
# error on any subsequent unexpected item in the stack.
cls.lib.ERR_clear_error()
if cls.lib.CRYPTOGRAPHY_NEEDS_OSRANDOM_ENGINE:
result = cls.lib.Cryptography_add_osrandom_engine()
_openssl_assert(cls.lib, result in (1, 2))
@classmethod
def _ensure_ffi_initialized(cls):
with cls._init_lock:
if not cls._lib_loaded:
cls.lib = build_conditional_library(lib, CONDITIONAL_NAMES)
cls._lib_loaded = True
cls._register_osrandom_engine()
# As of OpenSSL 3.0.0 we must register a legacy cipher provider
# to get RC2 (needed for junk asymmetric private key
# serialization), RC4, Blowfish, IDEA, SEED, etc. These things
# are ugly legacy, but we aren't going to get rid of them
# any time soon.
if cls.lib.CRYPTOGRAPHY_OPENSSL_300_OR_GREATER:
cls._legacy_provider = cls.lib.OSSL_PROVIDER_load(
cls.ffi.NULL, b"legacy"
)
_openssl_assert(
cls.lib, cls._legacy_provider != cls.ffi.NULL
)
cls._default_provider = cls.lib.OSSL_PROVIDER_load(
cls.ffi.NULL, b"default"
)
_openssl_assert(
cls.lib, cls._default_provider != cls.ffi.NULL
)
@classmethod
def init_static_locks(cls):
cls._ensure_ffi_initialized()
def _verify_openssl_version(lib):
if (
lib.CRYPTOGRAPHY_OPENSSL_LESS_THAN_111
and not lib.CRYPTOGRAPHY_IS_LIBRESSL
and not lib.CRYPTOGRAPHY_IS_BORINGSSL
):
warnings.warn(
"OpenSSL version 1.1.0 is no longer supported by the OpenSSL "
"project, please upgrade. The next release of cryptography will "
"be the last to support compiling with OpenSSL 1.1.0.",
utils.DeprecatedIn37,
)
def _verify_package_version(version):
# Occasionally we run into situations where the version of the Python
# package does not match the version of the shared object that is loaded.
# This may occur in environments where multiple versions of cryptography
# are installed and available in the python path. To avoid errors cropping
# up later this code checks that the currently imported package and the
# shared object that were loaded have the same version and raise an
# ImportError if they do not
so_package_version = ffi.string(lib.CRYPTOGRAPHY_PACKAGE_VERSION)
if version.encode("ascii") != so_package_version:
raise ImportError(
"The version of cryptography does not match the loaded "
"shared object. This can happen if you have multiple copies of "
"cryptography installed in your Python path. Please try creating "
"a new virtual environment to resolve this issue. "
"Loaded python version: {}, shared object version: {}".format(
version, so_package_version
)
)
_verify_package_version(cryptography.__version__)
Binding.init_static_locks()
_verify_openssl_version(Binding.lib)

View File

@@ -0,0 +1,3 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.

View File

@@ -0,0 +1,17 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
# This exists to break an import cycle. It is normally accessible from the
# asymmetric padding module.
class AsymmetricPadding(metaclass=abc.ABCMeta):
@abc.abstractproperty
def name(self) -> str:
"""
A string naming this padding (e.g. "PSS", "PKCS1").
"""

View File

@@ -0,0 +1,40 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
import typing
# This exists to break an import cycle. It is normally accessible from the
# ciphers module.
class CipherAlgorithm(metaclass=abc.ABCMeta):
@abc.abstractproperty
def name(self) -> str:
"""
A string naming this mode (e.g. "AES", "Camellia").
"""
@abc.abstractproperty
def key_sizes(self) -> typing.FrozenSet[int]:
"""
Valid key sizes for this algorithm in bits
"""
@abc.abstractproperty
def key_size(self) -> int:
"""
The size of the key being used as an integer in bits (e.g. 128, 256).
"""
class BlockCipherAlgorithm(metaclass=abc.ABCMeta):
key: bytes
@abc.abstractproperty
def block_size(self) -> int:
"""
The size of a block as an integer in bits (e.g. 64, 128).
"""

View File

@@ -0,0 +1,55 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
from cryptography import utils
# This exists to break an import cycle. These classes are normally accessible
# from the serialization module.
class Encoding(utils.Enum):
PEM = "PEM"
DER = "DER"
OpenSSH = "OpenSSH"
Raw = "Raw"
X962 = "ANSI X9.62"
SMIME = "S/MIME"
class PrivateFormat(utils.Enum):
PKCS8 = "PKCS8"
TraditionalOpenSSL = "TraditionalOpenSSL"
Raw = "Raw"
OpenSSH = "OpenSSH"
class PublicFormat(utils.Enum):
SubjectPublicKeyInfo = "X.509 subjectPublicKeyInfo with PKCS#1"
PKCS1 = "Raw PKCS#1"
OpenSSH = "OpenSSH"
Raw = "Raw"
CompressedPoint = "X9.62 Compressed Point"
UncompressedPoint = "X9.62 Uncompressed Point"
class ParameterFormat(utils.Enum):
PKCS3 = "PKCS3"
class KeySerializationEncryption(metaclass=abc.ABCMeta):
pass
class BestAvailableEncryption(KeySerializationEncryption):
def __init__(self, password: bytes):
if not isinstance(password, bytes) or len(password) == 0:
raise ValueError("Password must be 1 or more bytes.")
self.password = password
class NoEncryption(KeySerializationEncryption):
pass

View File

@@ -0,0 +1,3 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.

View File

@@ -0,0 +1,250 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
import typing
from cryptography.hazmat.primitives import _serialization
_MIN_MODULUS_SIZE = 512
def generate_parameters(
generator: int, key_size: int, backend: typing.Any = None
) -> "DHParameters":
from cryptography.hazmat.backends.openssl.backend import backend as ossl
return ossl.generate_dh_parameters(generator, key_size)
class DHParameterNumbers:
def __init__(self, p: int, g: int, q: typing.Optional[int] = None) -> None:
if not isinstance(p, int) or not isinstance(g, int):
raise TypeError("p and g must be integers")
if q is not None and not isinstance(q, int):
raise TypeError("q must be integer or None")
if g < 2:
raise ValueError("DH generator must be 2 or greater")
if p.bit_length() < _MIN_MODULUS_SIZE:
raise ValueError(
"p (modulus) must be at least {}-bit".format(_MIN_MODULUS_SIZE)
)
self._p = p
self._g = g
self._q = q
def __eq__(self, other: object) -> bool:
if not isinstance(other, DHParameterNumbers):
return NotImplemented
return (
self._p == other._p and self._g == other._g and self._q == other._q
)
def parameters(self, backend: typing.Any = None) -> "DHParameters":
from cryptography.hazmat.backends.openssl.backend import (
backend as ossl,
)
return ossl.load_dh_parameter_numbers(self)
@property
def p(self) -> int:
return self._p
@property
def g(self) -> int:
return self._g
@property
def q(self) -> typing.Optional[int]:
return self._q
class DHPublicNumbers:
def __init__(self, y: int, parameter_numbers: DHParameterNumbers) -> None:
if not isinstance(y, int):
raise TypeError("y must be an integer.")
if not isinstance(parameter_numbers, DHParameterNumbers):
raise TypeError(
"parameters must be an instance of DHParameterNumbers."
)
self._y = y
self._parameter_numbers = parameter_numbers
def __eq__(self, other: object) -> bool:
if not isinstance(other, DHPublicNumbers):
return NotImplemented
return (
self._y == other._y
and self._parameter_numbers == other._parameter_numbers
)
def public_key(self, backend: typing.Any = None) -> "DHPublicKey":
from cryptography.hazmat.backends.openssl.backend import (
backend as ossl,
)
return ossl.load_dh_public_numbers(self)
@property
def y(self) -> int:
return self._y
@property
def parameter_numbers(self) -> DHParameterNumbers:
return self._parameter_numbers
class DHPrivateNumbers:
def __init__(self, x: int, public_numbers: DHPublicNumbers) -> None:
if not isinstance(x, int):
raise TypeError("x must be an integer.")
if not isinstance(public_numbers, DHPublicNumbers):
raise TypeError(
"public_numbers must be an instance of " "DHPublicNumbers."
)
self._x = x
self._public_numbers = public_numbers
def __eq__(self, other: object) -> bool:
if not isinstance(other, DHPrivateNumbers):
return NotImplemented
return (
self._x == other._x
and self._public_numbers == other._public_numbers
)
def private_key(self, backend: typing.Any = None) -> "DHPrivateKey":
from cryptography.hazmat.backends.openssl.backend import (
backend as ossl,
)
return ossl.load_dh_private_numbers(self)
@property
def public_numbers(self) -> DHPublicNumbers:
return self._public_numbers
@property
def x(self) -> int:
return self._x
class DHParameters(metaclass=abc.ABCMeta):
@abc.abstractmethod
def generate_private_key(self) -> "DHPrivateKey":
"""
Generates and returns a DHPrivateKey.
"""
@abc.abstractmethod
def parameter_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.ParameterFormat,
) -> bytes:
"""
Returns the parameters serialized as bytes.
"""
@abc.abstractmethod
def parameter_numbers(self) -> DHParameterNumbers:
"""
Returns a DHParameterNumbers.
"""
DHParametersWithSerialization = DHParameters
class DHPublicKey(metaclass=abc.ABCMeta):
@abc.abstractproperty
def key_size(self) -> int:
"""
The bit length of the prime modulus.
"""
@abc.abstractmethod
def parameters(self) -> DHParameters:
"""
The DHParameters object associated with this public key.
"""
@abc.abstractmethod
def public_numbers(self) -> DHPublicNumbers:
"""
Returns a DHPublicNumbers.
"""
@abc.abstractmethod
def public_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PublicFormat,
) -> bytes:
"""
Returns the key serialized as bytes.
"""
DHPublicKeyWithSerialization = DHPublicKey
class DHPrivateKey(metaclass=abc.ABCMeta):
@abc.abstractproperty
def key_size(self) -> int:
"""
The bit length of the prime modulus.
"""
@abc.abstractmethod
def public_key(self) -> DHPublicKey:
"""
The DHPublicKey associated with this private key.
"""
@abc.abstractmethod
def parameters(self) -> DHParameters:
"""
The DHParameters object associated with this private key.
"""
@abc.abstractmethod
def exchange(self, peer_public_key: DHPublicKey) -> bytes:
"""
Given peer's DHPublicKey, carry out the key exchange and
return shared key as bytes.
"""
@abc.abstractmethod
def private_numbers(self) -> DHPrivateNumbers:
"""
Returns a DHPrivateNumbers.
"""
@abc.abstractmethod
def private_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PrivateFormat,
encryption_algorithm: _serialization.KeySerializationEncryption,
) -> bytes:
"""
Returns the key serialized as bytes.
"""
DHPrivateKeyWithSerialization = DHPrivateKey

View File

@@ -0,0 +1,288 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
import typing
from cryptography.hazmat.primitives import _serialization, hashes
from cryptography.hazmat.primitives.asymmetric import (
utils as asym_utils,
)
class DSAParameters(metaclass=abc.ABCMeta):
@abc.abstractmethod
def generate_private_key(self) -> "DSAPrivateKey":
"""
Generates and returns a DSAPrivateKey.
"""
@abc.abstractmethod
def parameter_numbers(self) -> "DSAParameterNumbers":
"""
Returns a DSAParameterNumbers.
"""
DSAParametersWithNumbers = DSAParameters
class DSAPrivateKey(metaclass=abc.ABCMeta):
@abc.abstractproperty
def key_size(self) -> int:
"""
The bit length of the prime modulus.
"""
@abc.abstractmethod
def public_key(self) -> "DSAPublicKey":
"""
The DSAPublicKey associated with this private key.
"""
@abc.abstractmethod
def parameters(self) -> DSAParameters:
"""
The DSAParameters object associated with this private key.
"""
@abc.abstractmethod
def sign(
self,
data: bytes,
algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm],
) -> bytes:
"""
Signs the data
"""
@abc.abstractmethod
def private_numbers(self) -> "DSAPrivateNumbers":
"""
Returns a DSAPrivateNumbers.
"""
@abc.abstractmethod
def private_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PrivateFormat,
encryption_algorithm: _serialization.KeySerializationEncryption,
) -> bytes:
"""
Returns the key serialized as bytes.
"""
DSAPrivateKeyWithSerialization = DSAPrivateKey
class DSAPublicKey(metaclass=abc.ABCMeta):
@abc.abstractproperty
def key_size(self) -> int:
"""
The bit length of the prime modulus.
"""
@abc.abstractmethod
def parameters(self) -> DSAParameters:
"""
The DSAParameters object associated with this public key.
"""
@abc.abstractmethod
def public_numbers(self) -> "DSAPublicNumbers":
"""
Returns a DSAPublicNumbers.
"""
@abc.abstractmethod
def public_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PublicFormat,
) -> bytes:
"""
Returns the key serialized as bytes.
"""
@abc.abstractmethod
def verify(
self,
signature: bytes,
data: bytes,
algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm],
) -> None:
"""
Verifies the signature of the data.
"""
DSAPublicKeyWithSerialization = DSAPublicKey
class DSAParameterNumbers:
def __init__(self, p: int, q: int, g: int):
if (
not isinstance(p, int)
or not isinstance(q, int)
or not isinstance(g, int)
):
raise TypeError(
"DSAParameterNumbers p, q, and g arguments must be integers."
)
self._p = p
self._q = q
self._g = g
@property
def p(self) -> int:
return self._p
@property
def q(self) -> int:
return self._q
@property
def g(self) -> int:
return self._g
def parameters(self, backend: typing.Any = None) -> DSAParameters:
from cryptography.hazmat.backends.openssl.backend import (
backend as ossl,
)
return ossl.load_dsa_parameter_numbers(self)
def __eq__(self, other: object) -> bool:
if not isinstance(other, DSAParameterNumbers):
return NotImplemented
return self.p == other.p and self.q == other.q and self.g == other.g
def __repr__(self) -> str:
return (
"<DSAParameterNumbers(p={self.p}, q={self.q}, "
"g={self.g})>".format(self=self)
)
class DSAPublicNumbers:
def __init__(self, y: int, parameter_numbers: DSAParameterNumbers):
if not isinstance(y, int):
raise TypeError("DSAPublicNumbers y argument must be an integer.")
if not isinstance(parameter_numbers, DSAParameterNumbers):
raise TypeError(
"parameter_numbers must be a DSAParameterNumbers instance."
)
self._y = y
self._parameter_numbers = parameter_numbers
@property
def y(self) -> int:
return self._y
@property
def parameter_numbers(self) -> DSAParameterNumbers:
return self._parameter_numbers
def public_key(self, backend: typing.Any = None) -> DSAPublicKey:
from cryptography.hazmat.backends.openssl.backend import (
backend as ossl,
)
return ossl.load_dsa_public_numbers(self)
def __eq__(self, other: object) -> bool:
if not isinstance(other, DSAPublicNumbers):
return NotImplemented
return (
self.y == other.y
and self.parameter_numbers == other.parameter_numbers
)
def __repr__(self) -> str:
return (
"<DSAPublicNumbers(y={self.y}, "
"parameter_numbers={self.parameter_numbers})>".format(self=self)
)
class DSAPrivateNumbers:
def __init__(self, x: int, public_numbers: DSAPublicNumbers):
if not isinstance(x, int):
raise TypeError("DSAPrivateNumbers x argument must be an integer.")
if not isinstance(public_numbers, DSAPublicNumbers):
raise TypeError(
"public_numbers must be a DSAPublicNumbers instance."
)
self._public_numbers = public_numbers
self._x = x
@property
def x(self) -> int:
return self._x
@property
def public_numbers(self) -> DSAPublicNumbers:
return self._public_numbers
def private_key(self, backend: typing.Any = None) -> DSAPrivateKey:
from cryptography.hazmat.backends.openssl.backend import (
backend as ossl,
)
return ossl.load_dsa_private_numbers(self)
def __eq__(self, other: object) -> bool:
if not isinstance(other, DSAPrivateNumbers):
return NotImplemented
return (
self.x == other.x and self.public_numbers == other.public_numbers
)
def generate_parameters(
key_size: int, backend: typing.Any = None
) -> DSAParameters:
from cryptography.hazmat.backends.openssl.backend import backend as ossl
return ossl.generate_dsa_parameters(key_size)
def generate_private_key(
key_size: int, backend: typing.Any = None
) -> DSAPrivateKey:
from cryptography.hazmat.backends.openssl.backend import backend as ossl
return ossl.generate_dsa_private_key_and_parameters(key_size)
def _check_dsa_parameters(parameters: DSAParameterNumbers) -> None:
if parameters.p.bit_length() not in [1024, 2048, 3072, 4096]:
raise ValueError(
"p must be exactly 1024, 2048, 3072, or 4096 bits long"
)
if parameters.q.bit_length() not in [160, 224, 256]:
raise ValueError("q must be exactly 160, 224, or 256 bits long")
if not (1 < parameters.g < parameters.p):
raise ValueError("g, p don't satisfy 1 < g < p.")
def _check_dsa_private_numbers(numbers: DSAPrivateNumbers) -> None:
parameters = numbers.public_numbers.parameter_numbers
_check_dsa_parameters(parameters)
if numbers.x <= 0 or numbers.x >= parameters.q:
raise ValueError("x must be > 0 and < q.")
if numbers.public_numbers.y != pow(parameters.g, numbers.x, parameters.p):
raise ValueError("y must be equal to (g ** x % p).")

View File

@@ -0,0 +1,523 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
import typing
import warnings
from cryptography import utils
from cryptography.hazmat._oid import ObjectIdentifier
from cryptography.hazmat.primitives import _serialization, hashes
from cryptography.hazmat.primitives.asymmetric import (
utils as asym_utils,
)
class EllipticCurveOID:
SECP192R1 = ObjectIdentifier("1.2.840.10045.3.1.1")
SECP224R1 = ObjectIdentifier("1.3.132.0.33")
SECP256K1 = ObjectIdentifier("1.3.132.0.10")
SECP256R1 = ObjectIdentifier("1.2.840.10045.3.1.7")
SECP384R1 = ObjectIdentifier("1.3.132.0.34")
SECP521R1 = ObjectIdentifier("1.3.132.0.35")
BRAINPOOLP256R1 = ObjectIdentifier("1.3.36.3.3.2.8.1.1.7")
BRAINPOOLP384R1 = ObjectIdentifier("1.3.36.3.3.2.8.1.1.11")
BRAINPOOLP512R1 = ObjectIdentifier("1.3.36.3.3.2.8.1.1.13")
SECT163K1 = ObjectIdentifier("1.3.132.0.1")
SECT163R2 = ObjectIdentifier("1.3.132.0.15")
SECT233K1 = ObjectIdentifier("1.3.132.0.26")
SECT233R1 = ObjectIdentifier("1.3.132.0.27")
SECT283K1 = ObjectIdentifier("1.3.132.0.16")
SECT283R1 = ObjectIdentifier("1.3.132.0.17")
SECT409K1 = ObjectIdentifier("1.3.132.0.36")
SECT409R1 = ObjectIdentifier("1.3.132.0.37")
SECT571K1 = ObjectIdentifier("1.3.132.0.38")
SECT571R1 = ObjectIdentifier("1.3.132.0.39")
class EllipticCurve(metaclass=abc.ABCMeta):
@abc.abstractproperty
def name(self) -> str:
"""
The name of the curve. e.g. secp256r1.
"""
@abc.abstractproperty
def key_size(self) -> int:
"""
Bit size of a secret scalar for the curve.
"""
class EllipticCurveSignatureAlgorithm(metaclass=abc.ABCMeta):
@abc.abstractproperty
def algorithm(
self,
) -> typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm]:
"""
The digest algorithm used with this signature.
"""
class EllipticCurvePrivateKey(metaclass=abc.ABCMeta):
@abc.abstractmethod
def exchange(
self, algorithm: "ECDH", peer_public_key: "EllipticCurvePublicKey"
) -> bytes:
"""
Performs a key exchange operation using the provided algorithm with the
provided peer's public key.
"""
@abc.abstractmethod
def public_key(self) -> "EllipticCurvePublicKey":
"""
The EllipticCurvePublicKey for this private key.
"""
@abc.abstractproperty
def curve(self) -> EllipticCurve:
"""
The EllipticCurve that this key is on.
"""
@abc.abstractproperty
def key_size(self) -> int:
"""
Bit size of a secret scalar for the curve.
"""
@abc.abstractmethod
def sign(
self,
data: bytes,
signature_algorithm: EllipticCurveSignatureAlgorithm,
) -> bytes:
"""
Signs the data
"""
@abc.abstractmethod
def private_numbers(self) -> "EllipticCurvePrivateNumbers":
"""
Returns an EllipticCurvePrivateNumbers.
"""
@abc.abstractmethod
def private_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PrivateFormat,
encryption_algorithm: _serialization.KeySerializationEncryption,
) -> bytes:
"""
Returns the key serialized as bytes.
"""
EllipticCurvePrivateKeyWithSerialization = EllipticCurvePrivateKey
class EllipticCurvePublicKey(metaclass=abc.ABCMeta):
@abc.abstractproperty
def curve(self) -> EllipticCurve:
"""
The EllipticCurve that this key is on.
"""
@abc.abstractproperty
def key_size(self) -> int:
"""
Bit size of a secret scalar for the curve.
"""
@abc.abstractmethod
def public_numbers(self) -> "EllipticCurvePublicNumbers":
"""
Returns an EllipticCurvePublicNumbers.
"""
@abc.abstractmethod
def public_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PublicFormat,
) -> bytes:
"""
Returns the key serialized as bytes.
"""
@abc.abstractmethod
def verify(
self,
signature: bytes,
data: bytes,
signature_algorithm: EllipticCurveSignatureAlgorithm,
) -> None:
"""
Verifies the signature of the data.
"""
@classmethod
def from_encoded_point(
cls, curve: EllipticCurve, data: bytes
) -> "EllipticCurvePublicKey":
utils._check_bytes("data", data)
if not isinstance(curve, EllipticCurve):
raise TypeError("curve must be an EllipticCurve instance")
if len(data) == 0:
raise ValueError("data must not be an empty byte string")
if data[0] not in [0x02, 0x03, 0x04]:
raise ValueError("Unsupported elliptic curve point type")
from cryptography.hazmat.backends.openssl.backend import backend
return backend.load_elliptic_curve_public_bytes(curve, data)
EllipticCurvePublicKeyWithSerialization = EllipticCurvePublicKey
class SECT571R1(EllipticCurve):
name = "sect571r1"
key_size = 570
class SECT409R1(EllipticCurve):
name = "sect409r1"
key_size = 409
class SECT283R1(EllipticCurve):
name = "sect283r1"
key_size = 283
class SECT233R1(EllipticCurve):
name = "sect233r1"
key_size = 233
class SECT163R2(EllipticCurve):
name = "sect163r2"
key_size = 163
class SECT571K1(EllipticCurve):
name = "sect571k1"
key_size = 571
class SECT409K1(EllipticCurve):
name = "sect409k1"
key_size = 409
class SECT283K1(EllipticCurve):
name = "sect283k1"
key_size = 283
class SECT233K1(EllipticCurve):
name = "sect233k1"
key_size = 233
class SECT163K1(EllipticCurve):
name = "sect163k1"
key_size = 163
class SECP521R1(EllipticCurve):
name = "secp521r1"
key_size = 521
class SECP384R1(EllipticCurve):
name = "secp384r1"
key_size = 384
class SECP256R1(EllipticCurve):
name = "secp256r1"
key_size = 256
class SECP256K1(EllipticCurve):
name = "secp256k1"
key_size = 256
class SECP224R1(EllipticCurve):
name = "secp224r1"
key_size = 224
class SECP192R1(EllipticCurve):
name = "secp192r1"
key_size = 192
class BrainpoolP256R1(EllipticCurve):
name = "brainpoolP256r1"
key_size = 256
class BrainpoolP384R1(EllipticCurve):
name = "brainpoolP384r1"
key_size = 384
class BrainpoolP512R1(EllipticCurve):
name = "brainpoolP512r1"
key_size = 512
_CURVE_TYPES: typing.Dict[str, typing.Type[EllipticCurve]] = {
"prime192v1": SECP192R1,
"prime256v1": SECP256R1,
"secp192r1": SECP192R1,
"secp224r1": SECP224R1,
"secp256r1": SECP256R1,
"secp384r1": SECP384R1,
"secp521r1": SECP521R1,
"secp256k1": SECP256K1,
"sect163k1": SECT163K1,
"sect233k1": SECT233K1,
"sect283k1": SECT283K1,
"sect409k1": SECT409K1,
"sect571k1": SECT571K1,
"sect163r2": SECT163R2,
"sect233r1": SECT233R1,
"sect283r1": SECT283R1,
"sect409r1": SECT409R1,
"sect571r1": SECT571R1,
"brainpoolP256r1": BrainpoolP256R1,
"brainpoolP384r1": BrainpoolP384R1,
"brainpoolP512r1": BrainpoolP512R1,
}
class ECDSA(EllipticCurveSignatureAlgorithm):
def __init__(
self,
algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm],
):
self._algorithm = algorithm
@property
def algorithm(
self,
) -> typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm]:
return self._algorithm
def generate_private_key(
curve: EllipticCurve, backend: typing.Any = None
) -> EllipticCurvePrivateKey:
from cryptography.hazmat.backends.openssl.backend import backend as ossl
return ossl.generate_elliptic_curve_private_key(curve)
def derive_private_key(
private_value: int,
curve: EllipticCurve,
backend: typing.Any = None,
) -> EllipticCurvePrivateKey:
from cryptography.hazmat.backends.openssl.backend import backend as ossl
if not isinstance(private_value, int):
raise TypeError("private_value must be an integer type.")
if private_value <= 0:
raise ValueError("private_value must be a positive integer.")
if not isinstance(curve, EllipticCurve):
raise TypeError("curve must provide the EllipticCurve interface.")
return ossl.derive_elliptic_curve_private_key(private_value, curve)
class EllipticCurvePublicNumbers:
def __init__(self, x: int, y: int, curve: EllipticCurve):
if not isinstance(x, int) or not isinstance(y, int):
raise TypeError("x and y must be integers.")
if not isinstance(curve, EllipticCurve):
raise TypeError("curve must provide the EllipticCurve interface.")
self._y = y
self._x = x
self._curve = curve
def public_key(self, backend: typing.Any = None) -> EllipticCurvePublicKey:
from cryptography.hazmat.backends.openssl.backend import (
backend as ossl,
)
return ossl.load_elliptic_curve_public_numbers(self)
def encode_point(self) -> bytes:
warnings.warn(
"encode_point has been deprecated on EllipticCurvePublicNumbers"
" and will be removed in a future version. Please use "
"EllipticCurvePublicKey.public_bytes to obtain both "
"compressed and uncompressed point encoding.",
utils.PersistentlyDeprecated2019,
stacklevel=2,
)
# key_size is in bits. Convert to bytes and round up
byte_length = (self.curve.key_size + 7) // 8
return (
b"\x04"
+ utils.int_to_bytes(self.x, byte_length)
+ utils.int_to_bytes(self.y, byte_length)
)
@classmethod
def from_encoded_point(
cls, curve: EllipticCurve, data: bytes
) -> "EllipticCurvePublicNumbers":
if not isinstance(curve, EllipticCurve):
raise TypeError("curve must be an EllipticCurve instance")
warnings.warn(
"Support for unsafe construction of public numbers from "
"encoded data will be removed in a future version. "
"Please use EllipticCurvePublicKey.from_encoded_point",
utils.PersistentlyDeprecated2019,
stacklevel=2,
)
if data.startswith(b"\x04"):
# key_size is in bits. Convert to bytes and round up
byte_length = (curve.key_size + 7) // 8
if len(data) == 2 * byte_length + 1:
x = int.from_bytes(data[1 : byte_length + 1], "big")
y = int.from_bytes(data[byte_length + 1 :], "big")
return cls(x, y, curve)
else:
raise ValueError("Invalid elliptic curve point data length")
else:
raise ValueError("Unsupported elliptic curve point type")
@property
def curve(self) -> EllipticCurve:
return self._curve
@property
def x(self) -> int:
return self._x
@property
def y(self) -> int:
return self._y
def __eq__(self, other: object) -> bool:
if not isinstance(other, EllipticCurvePublicNumbers):
return NotImplemented
return (
self.x == other.x
and self.y == other.y
and self.curve.name == other.curve.name
and self.curve.key_size == other.curve.key_size
)
def __hash__(self) -> int:
return hash((self.x, self.y, self.curve.name, self.curve.key_size))
def __repr__(self) -> str:
return (
"<EllipticCurvePublicNumbers(curve={0.curve.name}, x={0.x}, "
"y={0.y}>".format(self)
)
class EllipticCurvePrivateNumbers:
def __init__(
self, private_value: int, public_numbers: EllipticCurvePublicNumbers
):
if not isinstance(private_value, int):
raise TypeError("private_value must be an integer.")
if not isinstance(public_numbers, EllipticCurvePublicNumbers):
raise TypeError(
"public_numbers must be an EllipticCurvePublicNumbers "
"instance."
)
self._private_value = private_value
self._public_numbers = public_numbers
def private_key(
self, backend: typing.Any = None
) -> EllipticCurvePrivateKey:
from cryptography.hazmat.backends.openssl.backend import (
backend as ossl,
)
return ossl.load_elliptic_curve_private_numbers(self)
@property
def private_value(self) -> int:
return self._private_value
@property
def public_numbers(self) -> EllipticCurvePublicNumbers:
return self._public_numbers
def __eq__(self, other: object) -> bool:
if not isinstance(other, EllipticCurvePrivateNumbers):
return NotImplemented
return (
self.private_value == other.private_value
and self.public_numbers == other.public_numbers
)
def __hash__(self) -> int:
return hash((self.private_value, self.public_numbers))
class ECDH:
pass
_OID_TO_CURVE = {
EllipticCurveOID.SECP192R1: SECP192R1,
EllipticCurveOID.SECP224R1: SECP224R1,
EllipticCurveOID.SECP256K1: SECP256K1,
EllipticCurveOID.SECP256R1: SECP256R1,
EllipticCurveOID.SECP384R1: SECP384R1,
EllipticCurveOID.SECP521R1: SECP521R1,
EllipticCurveOID.BRAINPOOLP256R1: BrainpoolP256R1,
EllipticCurveOID.BRAINPOOLP384R1: BrainpoolP384R1,
EllipticCurveOID.BRAINPOOLP512R1: BrainpoolP512R1,
EllipticCurveOID.SECT163K1: SECT163K1,
EllipticCurveOID.SECT163R2: SECT163R2,
EllipticCurveOID.SECT233K1: SECT233K1,
EllipticCurveOID.SECT233R1: SECT233R1,
EllipticCurveOID.SECT283K1: SECT283K1,
EllipticCurveOID.SECT283R1: SECT283R1,
EllipticCurveOID.SECT409K1: SECT409K1,
EllipticCurveOID.SECT409R1: SECT409R1,
EllipticCurveOID.SECT571K1: SECT571K1,
EllipticCurveOID.SECT571R1: SECT571R1,
}
def get_curve_for_oid(oid: ObjectIdentifier) -> typing.Type[EllipticCurve]:
try:
return _OID_TO_CURVE[oid]
except KeyError:
raise LookupError(
"The provided object identifier has no matching elliptic "
"curve class"
)

View File

@@ -0,0 +1,92 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import _serialization
_ED25519_KEY_SIZE = 32
_ED25519_SIG_SIZE = 64
class Ed25519PublicKey(metaclass=abc.ABCMeta):
@classmethod
def from_public_bytes(cls, data: bytes) -> "Ed25519PublicKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.ed25519_supported():
raise UnsupportedAlgorithm(
"ed25519 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM,
)
return backend.ed25519_load_public_bytes(data)
@abc.abstractmethod
def public_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PublicFormat,
) -> bytes:
"""
The serialized bytes of the public key.
"""
@abc.abstractmethod
def verify(self, signature: bytes, data: bytes) -> None:
"""
Verify the signature.
"""
class Ed25519PrivateKey(metaclass=abc.ABCMeta):
@classmethod
def generate(cls) -> "Ed25519PrivateKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.ed25519_supported():
raise UnsupportedAlgorithm(
"ed25519 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM,
)
return backend.ed25519_generate_key()
@classmethod
def from_private_bytes(cls, data: bytes) -> "Ed25519PrivateKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.ed25519_supported():
raise UnsupportedAlgorithm(
"ed25519 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM,
)
return backend.ed25519_load_private_bytes(data)
@abc.abstractmethod
def public_key(self) -> Ed25519PublicKey:
"""
The Ed25519PublicKey derived from the private key.
"""
@abc.abstractmethod
def private_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PrivateFormat,
encryption_algorithm: _serialization.KeySerializationEncryption,
) -> bytes:
"""
The serialized bytes of the private key.
"""
@abc.abstractmethod
def sign(self, data: bytes) -> bytes:
"""
Signs the data.
"""

View File

@@ -0,0 +1,87 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import _serialization
class Ed448PublicKey(metaclass=abc.ABCMeta):
@classmethod
def from_public_bytes(cls, data: bytes) -> "Ed448PublicKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.ed448_supported():
raise UnsupportedAlgorithm(
"ed448 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM,
)
return backend.ed448_load_public_bytes(data)
@abc.abstractmethod
def public_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PublicFormat,
) -> bytes:
"""
The serialized bytes of the public key.
"""
@abc.abstractmethod
def verify(self, signature: bytes, data: bytes) -> None:
"""
Verify the signature.
"""
class Ed448PrivateKey(metaclass=abc.ABCMeta):
@classmethod
def generate(cls) -> "Ed448PrivateKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.ed448_supported():
raise UnsupportedAlgorithm(
"ed448 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM,
)
return backend.ed448_generate_key()
@classmethod
def from_private_bytes(cls, data: bytes) -> "Ed448PrivateKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.ed448_supported():
raise UnsupportedAlgorithm(
"ed448 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM,
)
return backend.ed448_load_private_bytes(data)
@abc.abstractmethod
def public_key(self) -> Ed448PublicKey:
"""
The Ed448PublicKey derived from the private key.
"""
@abc.abstractmethod
def sign(self, data: bytes) -> bytes:
"""
Signs the data.
"""
@abc.abstractmethod
def private_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PrivateFormat,
encryption_algorithm: _serialization.KeySerializationEncryption,
) -> bytes:
"""
The serialized bytes of the private key.
"""

View File

@@ -0,0 +1,101 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
import typing
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives._asymmetric import (
AsymmetricPadding as AsymmetricPadding,
)
from cryptography.hazmat.primitives.asymmetric import rsa
class PKCS1v15(AsymmetricPadding):
name = "EMSA-PKCS1-v1_5"
class _MaxLength:
"Sentinel value for `MAX_LENGTH`."
class _Auto:
"Sentinel value for `AUTO`."
class _DigestLength:
"Sentinel value for `DIGEST_LENGTH`."
class PSS(AsymmetricPadding):
MAX_LENGTH = _MaxLength()
AUTO = _Auto()
DIGEST_LENGTH = _DigestLength()
name = "EMSA-PSS"
_salt_length: typing.Union[int, _MaxLength, _Auto, _DigestLength]
def __init__(
self,
mgf: "MGF",
salt_length: typing.Union[int, _MaxLength, _Auto, _DigestLength],
) -> None:
self._mgf = mgf
if not isinstance(
salt_length, (int, _MaxLength, _Auto, _DigestLength)
):
raise TypeError(
"salt_length must be an integer, MAX_LENGTH, "
"DIGEST_LENGTH, or AUTO"
)
if isinstance(salt_length, int) and salt_length < 0:
raise ValueError("salt_length must be zero or greater.")
self._salt_length = salt_length
class OAEP(AsymmetricPadding):
name = "EME-OAEP"
def __init__(
self,
mgf: "MGF",
algorithm: hashes.HashAlgorithm,
label: typing.Optional[bytes],
):
if not isinstance(algorithm, hashes.HashAlgorithm):
raise TypeError("Expected instance of hashes.HashAlgorithm.")
self._mgf = mgf
self._algorithm = algorithm
self._label = label
class MGF(metaclass=abc.ABCMeta):
_algorithm: hashes.HashAlgorithm
class MGF1(MGF):
MAX_LENGTH = _MaxLength()
def __init__(self, algorithm: hashes.HashAlgorithm):
if not isinstance(algorithm, hashes.HashAlgorithm):
raise TypeError("Expected instance of hashes.HashAlgorithm.")
self._algorithm = algorithm
def calculate_max_pss_salt_length(
key: typing.Union["rsa.RSAPrivateKey", "rsa.RSAPublicKey"],
hash_algorithm: hashes.HashAlgorithm,
) -> int:
if not isinstance(key, (rsa.RSAPrivateKey, rsa.RSAPublicKey)):
raise TypeError("key must be an RSA public or private key")
# bit length - 1 per RFC 3447
emlen = (key.key_size + 6) // 8
salt_length = emlen - hash_algorithm.digest_size - 2
assert salt_length >= 0
return salt_length

View File

@@ -0,0 +1,425 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
import typing
from math import gcd
from cryptography.hazmat.primitives import _serialization, hashes
from cryptography.hazmat.primitives._asymmetric import AsymmetricPadding
from cryptography.hazmat.primitives.asymmetric import (
utils as asym_utils,
)
class RSAPrivateKey(metaclass=abc.ABCMeta):
@abc.abstractmethod
def decrypt(self, ciphertext: bytes, padding: AsymmetricPadding) -> bytes:
"""
Decrypts the provided ciphertext.
"""
@abc.abstractproperty
def key_size(self) -> int:
"""
The bit length of the public modulus.
"""
@abc.abstractmethod
def public_key(self) -> "RSAPublicKey":
"""
The RSAPublicKey associated with this private key.
"""
@abc.abstractmethod
def sign(
self,
data: bytes,
padding: AsymmetricPadding,
algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm],
) -> bytes:
"""
Signs the data.
"""
@abc.abstractmethod
def private_numbers(self) -> "RSAPrivateNumbers":
"""
Returns an RSAPrivateNumbers.
"""
@abc.abstractmethod
def private_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PrivateFormat,
encryption_algorithm: _serialization.KeySerializationEncryption,
) -> bytes:
"""
Returns the key serialized as bytes.
"""
RSAPrivateKeyWithSerialization = RSAPrivateKey
class RSAPublicKey(metaclass=abc.ABCMeta):
@abc.abstractmethod
def encrypt(self, plaintext: bytes, padding: AsymmetricPadding) -> bytes:
"""
Encrypts the given plaintext.
"""
@abc.abstractproperty
def key_size(self) -> int:
"""
The bit length of the public modulus.
"""
@abc.abstractmethod
def public_numbers(self) -> "RSAPublicNumbers":
"""
Returns an RSAPublicNumbers
"""
@abc.abstractmethod
def public_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PublicFormat,
) -> bytes:
"""
Returns the key serialized as bytes.
"""
@abc.abstractmethod
def verify(
self,
signature: bytes,
data: bytes,
padding: AsymmetricPadding,
algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm],
) -> None:
"""
Verifies the signature of the data.
"""
@abc.abstractmethod
def recover_data_from_signature(
self,
signature: bytes,
padding: AsymmetricPadding,
algorithm: typing.Optional[hashes.HashAlgorithm],
) -> bytes:
"""
Recovers the original data from the signature.
"""
RSAPublicKeyWithSerialization = RSAPublicKey
def generate_private_key(
public_exponent: int,
key_size: int,
backend: typing.Any = None,
) -> RSAPrivateKey:
from cryptography.hazmat.backends.openssl.backend import backend as ossl
_verify_rsa_parameters(public_exponent, key_size)
return ossl.generate_rsa_private_key(public_exponent, key_size)
def _verify_rsa_parameters(public_exponent: int, key_size: int) -> None:
if public_exponent not in (3, 65537):
raise ValueError(
"public_exponent must be either 3 (for legacy compatibility) or "
"65537. Almost everyone should choose 65537 here!"
)
if key_size < 512:
raise ValueError("key_size must be at least 512-bits.")
def _check_private_key_components(
p: int,
q: int,
private_exponent: int,
dmp1: int,
dmq1: int,
iqmp: int,
public_exponent: int,
modulus: int,
) -> None:
if modulus < 3:
raise ValueError("modulus must be >= 3.")
if p >= modulus:
raise ValueError("p must be < modulus.")
if q >= modulus:
raise ValueError("q must be < modulus.")
if dmp1 >= modulus:
raise ValueError("dmp1 must be < modulus.")
if dmq1 >= modulus:
raise ValueError("dmq1 must be < modulus.")
if iqmp >= modulus:
raise ValueError("iqmp must be < modulus.")
if private_exponent >= modulus:
raise ValueError("private_exponent must be < modulus.")
if public_exponent < 3 or public_exponent >= modulus:
raise ValueError("public_exponent must be >= 3 and < modulus.")
if public_exponent & 1 == 0:
raise ValueError("public_exponent must be odd.")
if dmp1 & 1 == 0:
raise ValueError("dmp1 must be odd.")
if dmq1 & 1 == 0:
raise ValueError("dmq1 must be odd.")
if p * q != modulus:
raise ValueError("p*q must equal modulus.")
def _check_public_key_components(e: int, n: int) -> None:
if n < 3:
raise ValueError("n must be >= 3.")
if e < 3 or e >= n:
raise ValueError("e must be >= 3 and < n.")
if e & 1 == 0:
raise ValueError("e must be odd.")
def _modinv(e: int, m: int) -> int:
"""
Modular Multiplicative Inverse. Returns x such that: (x*e) mod m == 1
"""
x1, x2 = 1, 0
a, b = e, m
while b > 0:
q, r = divmod(a, b)
xn = x1 - q * x2
a, b, x1, x2 = b, r, x2, xn
return x1 % m
def rsa_crt_iqmp(p: int, q: int) -> int:
"""
Compute the CRT (q ** -1) % p value from RSA primes p and q.
"""
return _modinv(q, p)
def rsa_crt_dmp1(private_exponent: int, p: int) -> int:
"""
Compute the CRT private_exponent % (p - 1) value from the RSA
private_exponent (d) and p.
"""
return private_exponent % (p - 1)
def rsa_crt_dmq1(private_exponent: int, q: int) -> int:
"""
Compute the CRT private_exponent % (q - 1) value from the RSA
private_exponent (d) and q.
"""
return private_exponent % (q - 1)
# Controls the number of iterations rsa_recover_prime_factors will perform
# to obtain the prime factors. Each iteration increments by 2 so the actual
# maximum attempts is half this number.
_MAX_RECOVERY_ATTEMPTS = 1000
def rsa_recover_prime_factors(
n: int, e: int, d: int
) -> typing.Tuple[int, int]:
"""
Compute factors p and q from the private exponent d. We assume that n has
no more than two factors. This function is adapted from code in PyCrypto.
"""
# See 8.2.2(i) in Handbook of Applied Cryptography.
ktot = d * e - 1
# The quantity d*e-1 is a multiple of phi(n), even,
# and can be represented as t*2^s.
t = ktot
while t % 2 == 0:
t = t // 2
# Cycle through all multiplicative inverses in Zn.
# The algorithm is non-deterministic, but there is a 50% chance
# any candidate a leads to successful factoring.
# See "Digitalized Signatures and Public Key Functions as Intractable
# as Factorization", M. Rabin, 1979
spotted = False
a = 2
while not spotted and a < _MAX_RECOVERY_ATTEMPTS:
k = t
# Cycle through all values a^{t*2^i}=a^k
while k < ktot:
cand = pow(a, k, n)
# Check if a^k is a non-trivial root of unity (mod n)
if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1:
# We have found a number such that (cand-1)(cand+1)=0 (mod n).
# Either of the terms divides n.
p = gcd(cand + 1, n)
spotted = True
break
k *= 2
# This value was not any good... let's try another!
a += 2
if not spotted:
raise ValueError("Unable to compute factors p and q from exponent d.")
# Found !
q, r = divmod(n, p)
assert r == 0
p, q = sorted((p, q), reverse=True)
return (p, q)
class RSAPrivateNumbers:
def __init__(
self,
p: int,
q: int,
d: int,
dmp1: int,
dmq1: int,
iqmp: int,
public_numbers: "RSAPublicNumbers",
):
if (
not isinstance(p, int)
or not isinstance(q, int)
or not isinstance(d, int)
or not isinstance(dmp1, int)
or not isinstance(dmq1, int)
or not isinstance(iqmp, int)
):
raise TypeError(
"RSAPrivateNumbers p, q, d, dmp1, dmq1, iqmp arguments must"
" all be an integers."
)
if not isinstance(public_numbers, RSAPublicNumbers):
raise TypeError(
"RSAPrivateNumbers public_numbers must be an RSAPublicNumbers"
" instance."
)
self._p = p
self._q = q
self._d = d
self._dmp1 = dmp1
self._dmq1 = dmq1
self._iqmp = iqmp
self._public_numbers = public_numbers
@property
def p(self) -> int:
return self._p
@property
def q(self) -> int:
return self._q
@property
def d(self) -> int:
return self._d
@property
def dmp1(self) -> int:
return self._dmp1
@property
def dmq1(self) -> int:
return self._dmq1
@property
def iqmp(self) -> int:
return self._iqmp
@property
def public_numbers(self) -> "RSAPublicNumbers":
return self._public_numbers
def private_key(self, backend: typing.Any = None) -> RSAPrivateKey:
from cryptography.hazmat.backends.openssl.backend import (
backend as ossl,
)
return ossl.load_rsa_private_numbers(self)
def __eq__(self, other: object) -> bool:
if not isinstance(other, RSAPrivateNumbers):
return NotImplemented
return (
self.p == other.p
and self.q == other.q
and self.d == other.d
and self.dmp1 == other.dmp1
and self.dmq1 == other.dmq1
and self.iqmp == other.iqmp
and self.public_numbers == other.public_numbers
)
def __hash__(self) -> int:
return hash(
(
self.p,
self.q,
self.d,
self.dmp1,
self.dmq1,
self.iqmp,
self.public_numbers,
)
)
class RSAPublicNumbers:
def __init__(self, e: int, n: int):
if not isinstance(e, int) or not isinstance(n, int):
raise TypeError("RSAPublicNumbers arguments must be integers.")
self._e = e
self._n = n
@property
def e(self) -> int:
return self._e
@property
def n(self) -> int:
return self._n
def public_key(self, backend: typing.Any = None) -> RSAPublicKey:
from cryptography.hazmat.backends.openssl.backend import (
backend as ossl,
)
return ossl.load_rsa_public_numbers(self)
def __repr__(self) -> str:
return "<RSAPublicNumbers(e={0.e}, n={0.n})>".format(self)
def __eq__(self, other: object) -> bool:
if not isinstance(other, RSAPublicNumbers):
return NotImplemented
return self.e == other.e and self.n == other.n
def __hash__(self) -> int:
return hash((self.e, self.n))

View File

@@ -0,0 +1,69 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography.hazmat.primitives.asymmetric import (
dh,
dsa,
ec,
ed25519,
ed448,
rsa,
x25519,
x448,
)
# Every asymmetric key type
PUBLIC_KEY_TYPES = typing.Union[
dh.DHPublicKey,
dsa.DSAPublicKey,
rsa.RSAPublicKey,
ec.EllipticCurvePublicKey,
ed25519.Ed25519PublicKey,
ed448.Ed448PublicKey,
x25519.X25519PublicKey,
x448.X448PublicKey,
]
# Every asymmetric key type
PRIVATE_KEY_TYPES = typing.Union[
dh.DHPrivateKey,
ed25519.Ed25519PrivateKey,
ed448.Ed448PrivateKey,
rsa.RSAPrivateKey,
dsa.DSAPrivateKey,
ec.EllipticCurvePrivateKey,
x25519.X25519PrivateKey,
x448.X448PrivateKey,
]
# Just the key types we allow to be used for x509 signing. This mirrors
# the certificate public key types
CERTIFICATE_PRIVATE_KEY_TYPES = typing.Union[
ed25519.Ed25519PrivateKey,
ed448.Ed448PrivateKey,
rsa.RSAPrivateKey,
dsa.DSAPrivateKey,
ec.EllipticCurvePrivateKey,
]
# Just the key types we allow to be used for x509 signing. This mirrors
# the certificate private key types
CERTIFICATE_ISSUER_PUBLIC_KEY_TYPES = typing.Union[
dsa.DSAPublicKey,
rsa.RSAPublicKey,
ec.EllipticCurvePublicKey,
ed25519.Ed25519PublicKey,
ed448.Ed448PublicKey,
]
# This type removes DHPublicKey. x448/x25519 can be a public key
# but cannot be used in signing so they are allowed here.
CERTIFICATE_PUBLIC_KEY_TYPES = typing.Union[
dsa.DSAPublicKey,
rsa.RSAPublicKey,
ec.EllipticCurvePublicKey,
ed25519.Ed25519PublicKey,
ed448.Ed448PublicKey,
x25519.X25519PublicKey,
x448.X448PublicKey,
]

View File

@@ -0,0 +1,24 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from cryptography.hazmat.bindings._rust import asn1
from cryptography.hazmat.primitives import hashes
decode_dss_signature = asn1.decode_dss_signature
encode_dss_signature = asn1.encode_dss_signature
class Prehashed:
def __init__(self, algorithm: hashes.HashAlgorithm):
if not isinstance(algorithm, hashes.HashAlgorithm):
raise TypeError("Expected instance of HashAlgorithm.")
self._algorithm = algorithm
self._digest_size = algorithm.digest_size
@property
def digest_size(self) -> int:
return self._digest_size

View File

@@ -0,0 +1,81 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import _serialization
class X25519PublicKey(metaclass=abc.ABCMeta):
@classmethod
def from_public_bytes(cls, data: bytes) -> "X25519PublicKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.x25519_supported():
raise UnsupportedAlgorithm(
"X25519 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM,
)
return backend.x25519_load_public_bytes(data)
@abc.abstractmethod
def public_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PublicFormat,
) -> bytes:
"""
The serialized bytes of the public key.
"""
class X25519PrivateKey(metaclass=abc.ABCMeta):
@classmethod
def generate(cls) -> "X25519PrivateKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.x25519_supported():
raise UnsupportedAlgorithm(
"X25519 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM,
)
return backend.x25519_generate_key()
@classmethod
def from_private_bytes(cls, data: bytes) -> "X25519PrivateKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.x25519_supported():
raise UnsupportedAlgorithm(
"X25519 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM,
)
return backend.x25519_load_private_bytes(data)
@abc.abstractmethod
def public_key(self) -> X25519PublicKey:
"""
The serialized bytes of the public key.
"""
@abc.abstractmethod
def private_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PrivateFormat,
encryption_algorithm: _serialization.KeySerializationEncryption,
) -> bytes:
"""
The serialized bytes of the private key.
"""
@abc.abstractmethod
def exchange(self, peer_public_key: X25519PublicKey) -> bytes:
"""
Performs a key exchange operation using the provided peer's public key.
"""

View File

@@ -0,0 +1,81 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import _serialization
class X448PublicKey(metaclass=abc.ABCMeta):
@classmethod
def from_public_bytes(cls, data: bytes) -> "X448PublicKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.x448_supported():
raise UnsupportedAlgorithm(
"X448 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM,
)
return backend.x448_load_public_bytes(data)
@abc.abstractmethod
def public_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PublicFormat,
) -> bytes:
"""
The serialized bytes of the public key.
"""
class X448PrivateKey(metaclass=abc.ABCMeta):
@classmethod
def generate(cls) -> "X448PrivateKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.x448_supported():
raise UnsupportedAlgorithm(
"X448 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM,
)
return backend.x448_generate_key()
@classmethod
def from_private_bytes(cls, data: bytes) -> "X448PrivateKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.x448_supported():
raise UnsupportedAlgorithm(
"X448 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM,
)
return backend.x448_load_private_bytes(data)
@abc.abstractmethod
def public_key(self) -> X448PublicKey:
"""
The serialized bytes of the public key.
"""
@abc.abstractmethod
def private_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PrivateFormat,
encryption_algorithm: _serialization.KeySerializationEncryption,
) -> bytes:
"""
The serialized bytes of the private key.
"""
@abc.abstractmethod
def exchange(self, peer_public_key: X448PublicKey) -> bytes:
"""
Performs a key exchange operation using the provided peer's public key.
"""

View File

@@ -0,0 +1,27 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from cryptography.hazmat.primitives._cipheralgorithm import (
BlockCipherAlgorithm,
CipherAlgorithm,
)
from cryptography.hazmat.primitives.ciphers.base import (
AEADCipherContext,
AEADDecryptionContext,
AEADEncryptionContext,
Cipher,
CipherContext,
)
__all__ = [
"Cipher",
"CipherAlgorithm",
"BlockCipherAlgorithm",
"CipherContext",
"AEADCipherContext",
"AEADDecryptionContext",
"AEADEncryptionContext",
]

View File

@@ -0,0 +1,361 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import os
import typing
from cryptography import exceptions, utils
from cryptography.hazmat.backends.openssl import aead
from cryptography.hazmat.backends.openssl.backend import backend
class ChaCha20Poly1305:
_MAX_SIZE = 2**31 - 1
def __init__(self, key: bytes):
if not backend.aead_cipher_supported(self):
raise exceptions.UnsupportedAlgorithm(
"ChaCha20Poly1305 is not supported by this version of OpenSSL",
exceptions._Reasons.UNSUPPORTED_CIPHER,
)
utils._check_byteslike("key", key)
if len(key) != 32:
raise ValueError("ChaCha20Poly1305 key must be 32 bytes.")
self._key = key
@classmethod
def generate_key(cls) -> bytes:
return os.urandom(32)
def encrypt(
self,
nonce: bytes,
data: bytes,
associated_data: typing.Optional[bytes],
) -> bytes:
if associated_data is None:
associated_data = b""
if len(data) > self._MAX_SIZE or len(associated_data) > self._MAX_SIZE:
# This is OverflowError to match what cffi would raise
raise OverflowError(
"Data or associated data too long. Max 2**31 - 1 bytes"
)
self._check_params(nonce, data, associated_data)
return aead._encrypt(backend, self, nonce, data, [associated_data], 16)
def decrypt(
self,
nonce: bytes,
data: bytes,
associated_data: typing.Optional[bytes],
) -> bytes:
if associated_data is None:
associated_data = b""
self._check_params(nonce, data, associated_data)
return aead._decrypt(backend, self, nonce, data, [associated_data], 16)
def _check_params(
self,
nonce: bytes,
data: bytes,
associated_data: bytes,
) -> None:
utils._check_byteslike("nonce", nonce)
utils._check_bytes("data", data)
utils._check_bytes("associated_data", associated_data)
if len(nonce) != 12:
raise ValueError("Nonce must be 12 bytes")
class AESCCM:
_MAX_SIZE = 2**31 - 1
def __init__(self, key: bytes, tag_length: int = 16):
utils._check_byteslike("key", key)
if len(key) not in (16, 24, 32):
raise ValueError("AESCCM key must be 128, 192, or 256 bits.")
self._key = key
if not isinstance(tag_length, int):
raise TypeError("tag_length must be an integer")
if tag_length not in (4, 6, 8, 10, 12, 14, 16):
raise ValueError("Invalid tag_length")
self._tag_length = tag_length
if not backend.aead_cipher_supported(self):
raise exceptions.UnsupportedAlgorithm(
"AESCCM is not supported by this version of OpenSSL",
exceptions._Reasons.UNSUPPORTED_CIPHER,
)
@classmethod
def generate_key(cls, bit_length: int) -> bytes:
if not isinstance(bit_length, int):
raise TypeError("bit_length must be an integer")
if bit_length not in (128, 192, 256):
raise ValueError("bit_length must be 128, 192, or 256")
return os.urandom(bit_length // 8)
def encrypt(
self,
nonce: bytes,
data: bytes,
associated_data: typing.Optional[bytes],
) -> bytes:
if associated_data is None:
associated_data = b""
if len(data) > self._MAX_SIZE or len(associated_data) > self._MAX_SIZE:
# This is OverflowError to match what cffi would raise
raise OverflowError(
"Data or associated data too long. Max 2**31 - 1 bytes"
)
self._check_params(nonce, data, associated_data)
self._validate_lengths(nonce, len(data))
return aead._encrypt(
backend, self, nonce, data, [associated_data], self._tag_length
)
def decrypt(
self,
nonce: bytes,
data: bytes,
associated_data: typing.Optional[bytes],
) -> bytes:
if associated_data is None:
associated_data = b""
self._check_params(nonce, data, associated_data)
return aead._decrypt(
backend, self, nonce, data, [associated_data], self._tag_length
)
def _validate_lengths(self, nonce: bytes, data_len: int) -> None:
# For information about computing this, see
# https://tools.ietf.org/html/rfc3610#section-2.1
l_val = 15 - len(nonce)
if 2 ** (8 * l_val) < data_len:
raise ValueError("Data too long for nonce")
def _check_params(
self, nonce: bytes, data: bytes, associated_data: bytes
) -> None:
utils._check_byteslike("nonce", nonce)
utils._check_bytes("data", data)
utils._check_bytes("associated_data", associated_data)
if not 7 <= len(nonce) <= 13:
raise ValueError("Nonce must be between 7 and 13 bytes")
class AESGCM:
_MAX_SIZE = 2**31 - 1
def __init__(self, key: bytes):
utils._check_byteslike("key", key)
if len(key) not in (16, 24, 32):
raise ValueError("AESGCM key must be 128, 192, or 256 bits.")
self._key = key
@classmethod
def generate_key(cls, bit_length: int) -> bytes:
if not isinstance(bit_length, int):
raise TypeError("bit_length must be an integer")
if bit_length not in (128, 192, 256):
raise ValueError("bit_length must be 128, 192, or 256")
return os.urandom(bit_length // 8)
def encrypt(
self,
nonce: bytes,
data: bytes,
associated_data: typing.Optional[bytes],
) -> bytes:
if associated_data is None:
associated_data = b""
if len(data) > self._MAX_SIZE or len(associated_data) > self._MAX_SIZE:
# This is OverflowError to match what cffi would raise
raise OverflowError(
"Data or associated data too long. Max 2**31 - 1 bytes"
)
self._check_params(nonce, data, associated_data)
return aead._encrypt(backend, self, nonce, data, [associated_data], 16)
def decrypt(
self,
nonce: bytes,
data: bytes,
associated_data: typing.Optional[bytes],
) -> bytes:
if associated_data is None:
associated_data = b""
self._check_params(nonce, data, associated_data)
return aead._decrypt(backend, self, nonce, data, [associated_data], 16)
def _check_params(
self,
nonce: bytes,
data: bytes,
associated_data: bytes,
) -> None:
utils._check_byteslike("nonce", nonce)
utils._check_bytes("data", data)
utils._check_bytes("associated_data", associated_data)
if len(nonce) < 8 or len(nonce) > 128:
raise ValueError("Nonce must be between 8 and 128 bytes")
class AESOCB3:
_MAX_SIZE = 2**31 - 1
def __init__(self, key: bytes):
utils._check_byteslike("key", key)
if len(key) not in (16, 24, 32):
raise ValueError("AESOCB3 key must be 128, 192, or 256 bits.")
self._key = key
if not backend.aead_cipher_supported(self):
raise exceptions.UnsupportedAlgorithm(
"OCB3 is not supported by this version of OpenSSL",
exceptions._Reasons.UNSUPPORTED_CIPHER,
)
@classmethod
def generate_key(cls, bit_length: int) -> bytes:
if not isinstance(bit_length, int):
raise TypeError("bit_length must be an integer")
if bit_length not in (128, 192, 256):
raise ValueError("bit_length must be 128, 192, or 256")
return os.urandom(bit_length // 8)
def encrypt(
self,
nonce: bytes,
data: bytes,
associated_data: typing.Optional[bytes],
) -> bytes:
if associated_data is None:
associated_data = b""
if len(data) > self._MAX_SIZE or len(associated_data) > self._MAX_SIZE:
# This is OverflowError to match what cffi would raise
raise OverflowError(
"Data or associated data too long. Max 2**31 - 1 bytes"
)
self._check_params(nonce, data, associated_data)
return aead._encrypt(backend, self, nonce, data, [associated_data], 16)
def decrypt(
self,
nonce: bytes,
data: bytes,
associated_data: typing.Optional[bytes],
) -> bytes:
if associated_data is None:
associated_data = b""
self._check_params(nonce, data, associated_data)
return aead._decrypt(backend, self, nonce, data, [associated_data], 16)
def _check_params(
self,
nonce: bytes,
data: bytes,
associated_data: bytes,
) -> None:
utils._check_byteslike("nonce", nonce)
utils._check_bytes("data", data)
utils._check_bytes("associated_data", associated_data)
if len(nonce) < 12 or len(nonce) > 15:
raise ValueError("Nonce must be between 12 and 15 bytes")
class AESSIV(object):
_MAX_SIZE = 2**31 - 1
def __init__(self, key: bytes):
utils._check_byteslike("key", key)
if len(key) not in (32, 48, 64):
raise ValueError("AESSIV key must be 256, 384, or 512 bits.")
self._key = key
if not backend.aead_cipher_supported(self):
raise exceptions.UnsupportedAlgorithm(
"AES-SIV is not supported by this version of OpenSSL",
exceptions._Reasons.UNSUPPORTED_CIPHER,
)
@classmethod
def generate_key(cls, bit_length: int) -> bytes:
if not isinstance(bit_length, int):
raise TypeError("bit_length must be an integer")
if bit_length not in (256, 384, 512):
raise ValueError("bit_length must be 256, 384, or 512")
return os.urandom(bit_length // 8)
def encrypt(
self,
data: bytes,
associated_data: typing.Optional[typing.List[bytes]],
) -> bytes:
if associated_data is None:
associated_data = []
self._check_params(data, associated_data)
if len(data) > self._MAX_SIZE or any(
len(ad) > self._MAX_SIZE for ad in associated_data
):
# This is OverflowError to match what cffi would raise
raise OverflowError(
"Data or associated data too long. Max 2**31 - 1 bytes"
)
return aead._encrypt(backend, self, b"", data, associated_data, 16)
def decrypt(
self,
data: bytes,
associated_data: typing.Optional[typing.List[bytes]],
) -> bytes:
if associated_data is None:
associated_data = []
self._check_params(data, associated_data)
return aead._decrypt(backend, self, b"", data, associated_data, 16)
def _check_params(
self,
data: bytes,
associated_data: typing.List,
) -> None:
utils._check_bytes("data", data)
if not isinstance(associated_data, list) or not all(
isinstance(x, bytes) for x in associated_data
):
raise TypeError("associated_data must be a list of bytes or None")

View File

@@ -0,0 +1,207 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from cryptography import utils
from cryptography.hazmat.primitives.ciphers import (
BlockCipherAlgorithm,
CipherAlgorithm,
)
def _verify_key_size(algorithm: CipherAlgorithm, key: bytes) -> bytes:
# Verify that the key is instance of bytes
utils._check_byteslike("key", key)
# Verify that the key size matches the expected key size
if len(key) * 8 not in algorithm.key_sizes:
raise ValueError(
"Invalid key size ({}) for {}.".format(
len(key) * 8, algorithm.name
)
)
return key
class AES(CipherAlgorithm, BlockCipherAlgorithm):
name = "AES"
block_size = 128
# 512 added to support AES-256-XTS, which uses 512-bit keys
key_sizes = frozenset([128, 192, 256, 512])
def __init__(self, key: bytes):
self.key = _verify_key_size(self, key)
@property
def key_size(self) -> int:
return len(self.key) * 8
class Camellia(CipherAlgorithm, BlockCipherAlgorithm):
name = "camellia"
block_size = 128
key_sizes = frozenset([128, 192, 256])
def __init__(self, key: bytes):
self.key = _verify_key_size(self, key)
@property
def key_size(self) -> int:
return len(self.key) * 8
class TripleDES(CipherAlgorithm, BlockCipherAlgorithm):
name = "3DES"
block_size = 64
key_sizes = frozenset([64, 128, 192])
def __init__(self, key: bytes):
if len(key) == 8:
key += key + key
elif len(key) == 16:
key += key[:8]
self.key = _verify_key_size(self, key)
@property
def key_size(self) -> int:
return len(self.key) * 8
class Blowfish(CipherAlgorithm, BlockCipherAlgorithm):
name = "Blowfish"
block_size = 64
key_sizes = frozenset(range(32, 449, 8))
def __init__(self, key: bytes):
self.key = _verify_key_size(self, key)
@property
def key_size(self) -> int:
return len(self.key) * 8
_BlowfishInternal = Blowfish
utils.deprecated(
Blowfish,
__name__,
"Blowfish has been deprecated",
utils.DeprecatedIn37,
name="Blowfish",
)
class CAST5(CipherAlgorithm, BlockCipherAlgorithm):
name = "CAST5"
block_size = 64
key_sizes = frozenset(range(40, 129, 8))
def __init__(self, key: bytes):
self.key = _verify_key_size(self, key)
@property
def key_size(self) -> int:
return len(self.key) * 8
_CAST5Internal = CAST5
utils.deprecated(
CAST5,
__name__,
"CAST5 has been deprecated",
utils.DeprecatedIn37,
name="CAST5",
)
class ARC4(CipherAlgorithm):
name = "RC4"
key_sizes = frozenset([40, 56, 64, 80, 128, 160, 192, 256])
def __init__(self, key: bytes):
self.key = _verify_key_size(self, key)
@property
def key_size(self) -> int:
return len(self.key) * 8
class IDEA(CipherAlgorithm, BlockCipherAlgorithm):
name = "IDEA"
block_size = 64
key_sizes = frozenset([128])
def __init__(self, key: bytes):
self.key = _verify_key_size(self, key)
@property
def key_size(self) -> int:
return len(self.key) * 8
_IDEAInternal = IDEA
utils.deprecated(
IDEA,
__name__,
"IDEA has been deprecated",
utils.DeprecatedIn37,
name="IDEA",
)
class SEED(CipherAlgorithm, BlockCipherAlgorithm):
name = "SEED"
block_size = 128
key_sizes = frozenset([128])
def __init__(self, key: bytes):
self.key = _verify_key_size(self, key)
@property
def key_size(self) -> int:
return len(self.key) * 8
_SEEDInternal = SEED
utils.deprecated(
SEED,
__name__,
"SEED has been deprecated",
utils.DeprecatedIn37,
name="SEED",
)
class ChaCha20(CipherAlgorithm):
name = "ChaCha20"
key_sizes = frozenset([256])
def __init__(self, key: bytes, nonce: bytes):
self.key = _verify_key_size(self, key)
utils._check_byteslike("nonce", nonce)
if len(nonce) != 16:
raise ValueError("nonce must be 128-bits (16 bytes)")
self._nonce = nonce
@property
def nonce(self) -> bytes:
return self._nonce
@property
def key_size(self) -> int:
return len(self.key) * 8
class SM4(CipherAlgorithm, BlockCipherAlgorithm):
name = "SM4"
block_size = 128
key_sizes = frozenset([128])
def __init__(self, key: bytes):
self.key = _verify_key_size(self, key)
@property
def key_size(self) -> int:
return len(self.key) * 8

View File

@@ -0,0 +1,269 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
import typing
from cryptography.exceptions import (
AlreadyFinalized,
AlreadyUpdated,
NotYetFinalized,
)
from cryptography.hazmat.primitives._cipheralgorithm import CipherAlgorithm
from cryptography.hazmat.primitives.ciphers import modes
if typing.TYPE_CHECKING:
from cryptography.hazmat.backends.openssl.ciphers import (
_CipherContext as _BackendCipherContext,
)
class CipherContext(metaclass=abc.ABCMeta):
@abc.abstractmethod
def update(self, data: bytes) -> bytes:
"""
Processes the provided bytes through the cipher and returns the results
as bytes.
"""
@abc.abstractmethod
def update_into(self, data: bytes, buf: bytes) -> int:
"""
Processes the provided bytes and writes the resulting data into the
provided buffer. Returns the number of bytes written.
"""
@abc.abstractmethod
def finalize(self) -> bytes:
"""
Returns the results of processing the final block as bytes.
"""
class AEADCipherContext(CipherContext, metaclass=abc.ABCMeta):
@abc.abstractmethod
def authenticate_additional_data(self, data: bytes) -> None:
"""
Authenticates the provided bytes.
"""
class AEADDecryptionContext(AEADCipherContext, metaclass=abc.ABCMeta):
@abc.abstractmethod
def finalize_with_tag(self, tag: bytes) -> bytes:
"""
Returns the results of processing the final block as bytes and allows
delayed passing of the authentication tag.
"""
class AEADEncryptionContext(AEADCipherContext, metaclass=abc.ABCMeta):
@abc.abstractproperty
def tag(self) -> bytes:
"""
Returns tag bytes. This is only available after encryption is
finalized.
"""
Mode = typing.TypeVar(
"Mode", bound=typing.Optional[modes.Mode], covariant=True
)
class Cipher(typing.Generic[Mode]):
def __init__(
self,
algorithm: CipherAlgorithm,
mode: Mode,
backend: typing.Any = None,
):
if not isinstance(algorithm, CipherAlgorithm):
raise TypeError("Expected interface of CipherAlgorithm.")
if mode is not None:
# mypy needs this assert to narrow the type from our generic
# type. Maybe it won't some time in the future.
assert isinstance(mode, modes.Mode)
mode.validate_for_algorithm(algorithm)
self.algorithm = algorithm
self.mode = mode
@typing.overload
def encryptor(
self: "Cipher[modes.ModeWithAuthenticationTag]",
) -> AEADEncryptionContext:
...
@typing.overload
def encryptor(
self: "_CIPHER_TYPE",
) -> CipherContext:
...
def encryptor(self):
if isinstance(self.mode, modes.ModeWithAuthenticationTag):
if self.mode.tag is not None:
raise ValueError(
"Authentication tag must be None when encrypting."
)
from cryptography.hazmat.backends.openssl.backend import backend
ctx = backend.create_symmetric_encryption_ctx(
self.algorithm, self.mode
)
return self._wrap_ctx(ctx, encrypt=True)
@typing.overload
def decryptor(
self: "Cipher[modes.ModeWithAuthenticationTag]",
) -> AEADDecryptionContext:
...
@typing.overload
def decryptor(
self: "_CIPHER_TYPE",
) -> CipherContext:
...
def decryptor(self):
from cryptography.hazmat.backends.openssl.backend import backend
ctx = backend.create_symmetric_decryption_ctx(
self.algorithm, self.mode
)
return self._wrap_ctx(ctx, encrypt=False)
def _wrap_ctx(
self, ctx: "_BackendCipherContext", encrypt: bool
) -> typing.Union[
AEADEncryptionContext, AEADDecryptionContext, CipherContext
]:
if isinstance(self.mode, modes.ModeWithAuthenticationTag):
if encrypt:
return _AEADEncryptionContext(ctx)
else:
return _AEADDecryptionContext(ctx)
else:
return _CipherContext(ctx)
_CIPHER_TYPE = Cipher[
typing.Union[
modes.ModeWithNonce,
modes.ModeWithTweak,
None,
modes.ECB,
modes.ModeWithInitializationVector,
]
]
class _CipherContext(CipherContext):
_ctx: typing.Optional["_BackendCipherContext"]
def __init__(self, ctx: "_BackendCipherContext") -> None:
self._ctx = ctx
def update(self, data: bytes) -> bytes:
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
return self._ctx.update(data)
def update_into(self, data: bytes, buf: bytes) -> int:
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
return self._ctx.update_into(data, buf)
def finalize(self) -> bytes:
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
data = self._ctx.finalize()
self._ctx = None
return data
class _AEADCipherContext(AEADCipherContext):
_ctx: typing.Optional["_BackendCipherContext"]
_tag: typing.Optional[bytes]
def __init__(self, ctx: "_BackendCipherContext") -> None:
self._ctx = ctx
self._bytes_processed = 0
self._aad_bytes_processed = 0
self._tag = None
self._updated = False
def _check_limit(self, data_size: int) -> None:
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
self._updated = True
self._bytes_processed += data_size
if self._bytes_processed > self._ctx._mode._MAX_ENCRYPTED_BYTES:
raise ValueError(
"{} has a maximum encrypted byte limit of {}".format(
self._ctx._mode.name, self._ctx._mode._MAX_ENCRYPTED_BYTES
)
)
def update(self, data: bytes) -> bytes:
self._check_limit(len(data))
# mypy needs this assert even though _check_limit already checked
assert self._ctx is not None
return self._ctx.update(data)
def update_into(self, data: bytes, buf: bytes) -> int:
self._check_limit(len(data))
# mypy needs this assert even though _check_limit already checked
assert self._ctx is not None
return self._ctx.update_into(data, buf)
def finalize(self) -> bytes:
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
data = self._ctx.finalize()
self._tag = self._ctx.tag
self._ctx = None
return data
def authenticate_additional_data(self, data: bytes) -> None:
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
if self._updated:
raise AlreadyUpdated("Update has been called on this context.")
self._aad_bytes_processed += len(data)
if self._aad_bytes_processed > self._ctx._mode._MAX_AAD_BYTES:
raise ValueError(
"{} has a maximum AAD byte limit of {}".format(
self._ctx._mode.name, self._ctx._mode._MAX_AAD_BYTES
)
)
self._ctx.authenticate_additional_data(data)
class _AEADDecryptionContext(_AEADCipherContext, AEADDecryptionContext):
def finalize_with_tag(self, tag: bytes) -> bytes:
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
data = self._ctx.finalize_with_tag(tag)
self._tag = self._ctx.tag
self._ctx = None
return data
class _AEADEncryptionContext(_AEADCipherContext, AEADEncryptionContext):
@property
def tag(self) -> bytes:
if self._ctx is not None:
raise NotYetFinalized(
"You must finalize encryption before " "getting the tag."
)
assert self._tag is not None
return self._tag

View File

@@ -0,0 +1,263 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
import typing
from cryptography import utils
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives._cipheralgorithm import (
BlockCipherAlgorithm,
CipherAlgorithm,
)
class Mode(metaclass=abc.ABCMeta):
@abc.abstractproperty
def name(self) -> str:
"""
A string naming this mode (e.g. "ECB", "CBC").
"""
@abc.abstractmethod
def validate_for_algorithm(self, algorithm: CipherAlgorithm) -> None:
"""
Checks that all the necessary invariants of this (mode, algorithm)
combination are met.
"""
class ModeWithInitializationVector(Mode, metaclass=abc.ABCMeta):
@abc.abstractproperty
def initialization_vector(self) -> bytes:
"""
The value of the initialization vector for this mode as bytes.
"""
class ModeWithTweak(Mode, metaclass=abc.ABCMeta):
@abc.abstractproperty
def tweak(self) -> bytes:
"""
The value of the tweak for this mode as bytes.
"""
class ModeWithNonce(Mode, metaclass=abc.ABCMeta):
@abc.abstractproperty
def nonce(self) -> bytes:
"""
The value of the nonce for this mode as bytes.
"""
class ModeWithAuthenticationTag(Mode, metaclass=abc.ABCMeta):
@abc.abstractproperty
def tag(self) -> typing.Optional[bytes]:
"""
The value of the tag supplied to the constructor of this mode.
"""
def _check_aes_key_length(self: Mode, algorithm: CipherAlgorithm) -> None:
if algorithm.key_size > 256 and algorithm.name == "AES":
raise ValueError(
"Only 128, 192, and 256 bit keys are allowed for this AES mode"
)
def _check_iv_length(
self: ModeWithInitializationVector, algorithm: BlockCipherAlgorithm
) -> None:
if len(self.initialization_vector) * 8 != algorithm.block_size:
raise ValueError(
"Invalid IV size ({}) for {}.".format(
len(self.initialization_vector), self.name
)
)
def _check_nonce_length(
nonce: bytes, name: str, algorithm: CipherAlgorithm
) -> None:
if not isinstance(algorithm, BlockCipherAlgorithm):
raise UnsupportedAlgorithm(
f"{name} requires a block cipher algorithm",
_Reasons.UNSUPPORTED_CIPHER,
)
if len(nonce) * 8 != algorithm.block_size:
raise ValueError(
"Invalid nonce size ({}) for {}.".format(len(nonce), name)
)
def _check_iv_and_key_length(
self: ModeWithInitializationVector, algorithm: CipherAlgorithm
) -> None:
if not isinstance(algorithm, BlockCipherAlgorithm):
raise UnsupportedAlgorithm(
f"{self} requires a block cipher algorithm",
_Reasons.UNSUPPORTED_CIPHER,
)
_check_aes_key_length(self, algorithm)
_check_iv_length(self, algorithm)
class CBC(ModeWithInitializationVector):
name = "CBC"
def __init__(self, initialization_vector: bytes):
utils._check_byteslike("initialization_vector", initialization_vector)
self._initialization_vector = initialization_vector
@property
def initialization_vector(self) -> bytes:
return self._initialization_vector
validate_for_algorithm = _check_iv_and_key_length
class XTS(ModeWithTweak):
name = "XTS"
def __init__(self, tweak: bytes):
utils._check_byteslike("tweak", tweak)
if len(tweak) != 16:
raise ValueError("tweak must be 128-bits (16 bytes)")
self._tweak = tweak
@property
def tweak(self) -> bytes:
return self._tweak
def validate_for_algorithm(self, algorithm: CipherAlgorithm) -> None:
if algorithm.key_size not in (256, 512):
raise ValueError(
"The XTS specification requires a 256-bit key for AES-128-XTS"
" and 512-bit key for AES-256-XTS"
)
class ECB(Mode):
name = "ECB"
validate_for_algorithm = _check_aes_key_length
class OFB(ModeWithInitializationVector):
name = "OFB"
def __init__(self, initialization_vector: bytes):
utils._check_byteslike("initialization_vector", initialization_vector)
self._initialization_vector = initialization_vector
@property
def initialization_vector(self) -> bytes:
return self._initialization_vector
validate_for_algorithm = _check_iv_and_key_length
class CFB(ModeWithInitializationVector):
name = "CFB"
def __init__(self, initialization_vector: bytes):
utils._check_byteslike("initialization_vector", initialization_vector)
self._initialization_vector = initialization_vector
@property
def initialization_vector(self) -> bytes:
return self._initialization_vector
validate_for_algorithm = _check_iv_and_key_length
class CFB8(ModeWithInitializationVector):
name = "CFB8"
def __init__(self, initialization_vector: bytes):
utils._check_byteslike("initialization_vector", initialization_vector)
self._initialization_vector = initialization_vector
@property
def initialization_vector(self) -> bytes:
return self._initialization_vector
validate_for_algorithm = _check_iv_and_key_length
class CTR(ModeWithNonce):
name = "CTR"
def __init__(self, nonce: bytes):
utils._check_byteslike("nonce", nonce)
self._nonce = nonce
@property
def nonce(self) -> bytes:
return self._nonce
def validate_for_algorithm(self, algorithm: CipherAlgorithm) -> None:
_check_aes_key_length(self, algorithm)
_check_nonce_length(self.nonce, self.name, algorithm)
class GCM(ModeWithInitializationVector, ModeWithAuthenticationTag):
name = "GCM"
_MAX_ENCRYPTED_BYTES = (2**39 - 256) // 8
_MAX_AAD_BYTES = (2**64) // 8
def __init__(
self,
initialization_vector: bytes,
tag: typing.Optional[bytes] = None,
min_tag_length: int = 16,
):
# OpenSSL 3.0.0 constrains GCM IVs to [64, 1024] bits inclusive
# This is a sane limit anyway so we'll enforce it here.
utils._check_byteslike("initialization_vector", initialization_vector)
if len(initialization_vector) < 8 or len(initialization_vector) > 128:
raise ValueError(
"initialization_vector must be between 8 and 128 bytes (64 "
"and 1024 bits)."
)
self._initialization_vector = initialization_vector
if tag is not None:
utils._check_bytes("tag", tag)
if min_tag_length < 4:
raise ValueError("min_tag_length must be >= 4")
if len(tag) < min_tag_length:
raise ValueError(
"Authentication tag must be {} bytes or longer.".format(
min_tag_length
)
)
self._tag = tag
self._min_tag_length = min_tag_length
@property
def tag(self) -> typing.Optional[bytes]:
return self._tag
@property
def initialization_vector(self) -> bytes:
return self._initialization_vector
def validate_for_algorithm(self, algorithm: CipherAlgorithm) -> None:
_check_aes_key_length(self, algorithm)
if not isinstance(algorithm, BlockCipherAlgorithm):
raise UnsupportedAlgorithm(
"GCM requires a block cipher algorithm",
_Reasons.UNSUPPORTED_CIPHER,
)
block_size_bytes = algorithm.block_size // 8
if self._tag is not None and len(self._tag) > block_size_bytes:
raise ValueError(
"Authentication tag cannot be more than {} bytes.".format(
block_size_bytes
)
)

View File

@@ -0,0 +1,66 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized,
)
from cryptography.hazmat.primitives import ciphers
if typing.TYPE_CHECKING:
from cryptography.hazmat.backends.openssl.cmac import _CMACContext
class CMAC:
_ctx: typing.Optional["_CMACContext"]
_algorithm: ciphers.BlockCipherAlgorithm
def __init__(
self,
algorithm: ciphers.BlockCipherAlgorithm,
backend: typing.Any = None,
ctx: typing.Optional["_CMACContext"] = None,
):
if not isinstance(algorithm, ciphers.BlockCipherAlgorithm):
raise TypeError("Expected instance of BlockCipherAlgorithm.")
self._algorithm = algorithm
if ctx is None:
from cryptography.hazmat.backends.openssl.backend import (
backend as ossl,
)
self._ctx = ossl.create_cmac_ctx(self._algorithm)
else:
self._ctx = ctx
def update(self, data: bytes) -> None:
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
utils._check_bytes("data", data)
self._ctx.update(data)
def finalize(self) -> bytes:
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
digest = self._ctx.finalize()
self._ctx = None
return digest
def verify(self, signature: bytes) -> None:
utils._check_bytes("signature", signature)
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
ctx, self._ctx = self._ctx, None
ctx.verify(signature)
def copy(self) -> "CMAC":
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
return CMAC(self._algorithm, ctx=self._ctx.copy())

View File

@@ -0,0 +1,13 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import hmac
def bytes_eq(a: bytes, b: bytes) -> bool:
if not isinstance(a, bytes) or not isinstance(b, bytes):
raise TypeError("a and b must be bytes.")
return hmac.compare_digest(a, b)

View File

@@ -0,0 +1,259 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
import typing
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized,
)
class HashAlgorithm(metaclass=abc.ABCMeta):
@abc.abstractproperty
def name(self) -> str:
"""
A string naming this algorithm (e.g. "sha256", "md5").
"""
@abc.abstractproperty
def digest_size(self) -> int:
"""
The size of the resulting digest in bytes.
"""
@abc.abstractproperty
def block_size(self) -> typing.Optional[int]:
"""
The internal block size of the hash function, or None if the hash
function does not use blocks internally (e.g. SHA3).
"""
class HashContext(metaclass=abc.ABCMeta):
@abc.abstractproperty
def algorithm(self) -> HashAlgorithm:
"""
A HashAlgorithm that will be used by this context.
"""
@abc.abstractmethod
def update(self, data: bytes) -> None:
"""
Processes the provided bytes through the hash.
"""
@abc.abstractmethod
def finalize(self) -> bytes:
"""
Finalizes the hash context and returns the hash digest as bytes.
"""
@abc.abstractmethod
def copy(self) -> "HashContext":
"""
Return a HashContext that is a copy of the current context.
"""
class ExtendableOutputFunction(metaclass=abc.ABCMeta):
"""
An interface for extendable output functions.
"""
class Hash(HashContext):
_ctx: typing.Optional[HashContext]
def __init__(
self,
algorithm: HashAlgorithm,
backend: typing.Any = None,
ctx: typing.Optional["HashContext"] = None,
):
if not isinstance(algorithm, HashAlgorithm):
raise TypeError("Expected instance of hashes.HashAlgorithm.")
self._algorithm = algorithm
if ctx is None:
from cryptography.hazmat.backends.openssl.backend import (
backend as ossl,
)
self._ctx = ossl.create_hash_ctx(self.algorithm)
else:
self._ctx = ctx
@property
def algorithm(self) -> HashAlgorithm:
return self._algorithm
def update(self, data: bytes) -> None:
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
utils._check_byteslike("data", data)
self._ctx.update(data)
def copy(self) -> "Hash":
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
return Hash(self.algorithm, ctx=self._ctx.copy())
def finalize(self) -> bytes:
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
digest = self._ctx.finalize()
self._ctx = None
return digest
class SHA1(HashAlgorithm):
name = "sha1"
digest_size = 20
block_size = 64
class SHA512_224(HashAlgorithm): # noqa: N801
name = "sha512-224"
digest_size = 28
block_size = 128
class SHA512_256(HashAlgorithm): # noqa: N801
name = "sha512-256"
digest_size = 32
block_size = 128
class SHA224(HashAlgorithm):
name = "sha224"
digest_size = 28
block_size = 64
class SHA256(HashAlgorithm):
name = "sha256"
digest_size = 32
block_size = 64
class SHA384(HashAlgorithm):
name = "sha384"
digest_size = 48
block_size = 128
class SHA512(HashAlgorithm):
name = "sha512"
digest_size = 64
block_size = 128
class SHA3_224(HashAlgorithm): # noqa: N801
name = "sha3-224"
digest_size = 28
block_size = None
class SHA3_256(HashAlgorithm): # noqa: N801
name = "sha3-256"
digest_size = 32
block_size = None
class SHA3_384(HashAlgorithm): # noqa: N801
name = "sha3-384"
digest_size = 48
block_size = None
class SHA3_512(HashAlgorithm): # noqa: N801
name = "sha3-512"
digest_size = 64
block_size = None
class SHAKE128(HashAlgorithm, ExtendableOutputFunction):
name = "shake128"
block_size = None
def __init__(self, digest_size: int):
if not isinstance(digest_size, int):
raise TypeError("digest_size must be an integer")
if digest_size < 1:
raise ValueError("digest_size must be a positive integer")
self._digest_size = digest_size
@property
def digest_size(self) -> int:
return self._digest_size
class SHAKE256(HashAlgorithm, ExtendableOutputFunction):
name = "shake256"
block_size = None
def __init__(self, digest_size: int):
if not isinstance(digest_size, int):
raise TypeError("digest_size must be an integer")
if digest_size < 1:
raise ValueError("digest_size must be a positive integer")
self._digest_size = digest_size
@property
def digest_size(self) -> int:
return self._digest_size
class MD5(HashAlgorithm):
name = "md5"
digest_size = 16
block_size = 64
class BLAKE2b(HashAlgorithm):
name = "blake2b"
_max_digest_size = 64
_min_digest_size = 1
block_size = 128
def __init__(self, digest_size: int):
if digest_size != 64:
raise ValueError("Digest size must be 64")
self._digest_size = digest_size
@property
def digest_size(self) -> int:
return self._digest_size
class BLAKE2s(HashAlgorithm):
name = "blake2s"
block_size = 64
_max_digest_size = 32
_min_digest_size = 1
def __init__(self, digest_size: int):
if digest_size != 32:
raise ValueError("Digest size must be 32")
self._digest_size = digest_size
@property
def digest_size(self) -> int:
return self._digest_size
class SM3(HashAlgorithm):
name = "sm3"
digest_size = 32
block_size = 64

View File

@@ -0,0 +1,72 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized,
)
from cryptography.hazmat.backends.openssl.hmac import _HMACContext
from cryptography.hazmat.primitives import hashes
class HMAC(hashes.HashContext):
_ctx: typing.Optional[_HMACContext]
def __init__(
self,
key: bytes,
algorithm: hashes.HashAlgorithm,
backend: typing.Any = None,
ctx=None,
):
if not isinstance(algorithm, hashes.HashAlgorithm):
raise TypeError("Expected instance of hashes.HashAlgorithm.")
self._algorithm = algorithm
self._key = key
if ctx is None:
from cryptography.hazmat.backends.openssl.backend import (
backend as ossl,
)
self._ctx = ossl.create_hmac_ctx(key, self.algorithm)
else:
self._ctx = ctx
@property
def algorithm(self) -> hashes.HashAlgorithm:
return self._algorithm
def update(self, data: bytes) -> None:
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
utils._check_byteslike("data", data)
self._ctx.update(data)
def copy(self) -> "HMAC":
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
return HMAC(
self._key,
self.algorithm,
ctx=self._ctx.copy(),
)
def finalize(self) -> bytes:
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
digest = self._ctx.finalize()
self._ctx = None
return digest
def verify(self, signature: bytes) -> None:
utils._check_bytes("signature", signature)
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
ctx, self._ctx = self._ctx, None
ctx.verify(signature)

View File

@@ -0,0 +1,22 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
class KeyDerivationFunction(metaclass=abc.ABCMeta):
@abc.abstractmethod
def derive(self, key_material: bytes) -> bytes:
"""
Deterministically generates and returns a new key based on the existing
key material.
"""
@abc.abstractmethod
def verify(self, key_material: bytes, expected_key: bytes) -> None:
"""
Checks whether the key generated by the key material matches the
expected derived key. Raises an exception if they do not match.
"""

View File

@@ -0,0 +1,130 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized,
InvalidKey,
)
from cryptography.hazmat.primitives import constant_time, hashes, hmac
from cryptography.hazmat.primitives.kdf import KeyDerivationFunction
def _int_to_u32be(n: int) -> bytes:
return n.to_bytes(length=4, byteorder="big")
def _common_args_checks(
algorithm: hashes.HashAlgorithm,
length: int,
otherinfo: typing.Optional[bytes],
) -> None:
max_length = algorithm.digest_size * (2**32 - 1)
if length > max_length:
raise ValueError(
"Cannot derive keys larger than {} bits.".format(max_length)
)
if otherinfo is not None:
utils._check_bytes("otherinfo", otherinfo)
def _concatkdf_derive(
key_material: bytes,
length: int,
auxfn: typing.Callable[[], hashes.HashContext],
otherinfo: bytes,
) -> bytes:
utils._check_byteslike("key_material", key_material)
output = [b""]
outlen = 0
counter = 1
while length > outlen:
h = auxfn()
h.update(_int_to_u32be(counter))
h.update(key_material)
h.update(otherinfo)
output.append(h.finalize())
outlen += len(output[-1])
counter += 1
return b"".join(output)[:length]
class ConcatKDFHash(KeyDerivationFunction):
def __init__(
self,
algorithm: hashes.HashAlgorithm,
length: int,
otherinfo: typing.Optional[bytes],
backend: typing.Any = None,
):
_common_args_checks(algorithm, length, otherinfo)
self._algorithm = algorithm
self._length = length
self._otherinfo: bytes = otherinfo if otherinfo is not None else b""
self._used = False
def _hash(self) -> hashes.Hash:
return hashes.Hash(self._algorithm)
def derive(self, key_material: bytes) -> bytes:
if self._used:
raise AlreadyFinalized
self._used = True
return _concatkdf_derive(
key_material, self._length, self._hash, self._otherinfo
)
def verify(self, key_material: bytes, expected_key: bytes) -> None:
if not constant_time.bytes_eq(self.derive(key_material), expected_key):
raise InvalidKey
class ConcatKDFHMAC(KeyDerivationFunction):
def __init__(
self,
algorithm: hashes.HashAlgorithm,
length: int,
salt: typing.Optional[bytes],
otherinfo: typing.Optional[bytes],
backend: typing.Any = None,
):
_common_args_checks(algorithm, length, otherinfo)
self._algorithm = algorithm
self._length = length
self._otherinfo: bytes = otherinfo if otherinfo is not None else b""
if algorithm.block_size is None:
raise TypeError(
"{} is unsupported for ConcatKDF".format(algorithm.name)
)
if salt is None:
salt = b"\x00" * algorithm.block_size
else:
utils._check_bytes("salt", salt)
self._salt = salt
self._used = False
def _hmac(self) -> hmac.HMAC:
return hmac.HMAC(self._salt, self._algorithm)
def derive(self, key_material: bytes) -> bytes:
if self._used:
raise AlreadyFinalized
self._used = True
return _concatkdf_derive(
key_material, self._length, self._hmac, self._otherinfo
)
def verify(self, key_material: bytes, expected_key: bytes) -> None:
if not constant_time.bytes_eq(self.derive(key_material), expected_key):
raise InvalidKey

View File

@@ -0,0 +1,103 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized,
InvalidKey,
)
from cryptography.hazmat.primitives import constant_time, hashes, hmac
from cryptography.hazmat.primitives.kdf import KeyDerivationFunction
class HKDF(KeyDerivationFunction):
def __init__(
self,
algorithm: hashes.HashAlgorithm,
length: int,
salt: typing.Optional[bytes],
info: typing.Optional[bytes],
backend: typing.Any = None,
):
self._algorithm = algorithm
if salt is None:
salt = b"\x00" * self._algorithm.digest_size
else:
utils._check_bytes("salt", salt)
self._salt = salt
self._hkdf_expand = HKDFExpand(self._algorithm, length, info)
def _extract(self, key_material: bytes) -> bytes:
h = hmac.HMAC(self._salt, self._algorithm)
h.update(key_material)
return h.finalize()
def derive(self, key_material: bytes) -> bytes:
utils._check_byteslike("key_material", key_material)
return self._hkdf_expand.derive(self._extract(key_material))
def verify(self, key_material: bytes, expected_key: bytes) -> None:
if not constant_time.bytes_eq(self.derive(key_material), expected_key):
raise InvalidKey
class HKDFExpand(KeyDerivationFunction):
def __init__(
self,
algorithm: hashes.HashAlgorithm,
length: int,
info: typing.Optional[bytes],
backend: typing.Any = None,
):
self._algorithm = algorithm
max_length = 255 * algorithm.digest_size
if length > max_length:
raise ValueError(
"Cannot derive keys larger than {} octets.".format(max_length)
)
self._length = length
if info is None:
info = b""
else:
utils._check_bytes("info", info)
self._info = info
self._used = False
def _expand(self, key_material: bytes) -> bytes:
output = [b""]
counter = 1
while self._algorithm.digest_size * (len(output) - 1) < self._length:
h = hmac.HMAC(key_material, self._algorithm)
h.update(output[-1])
h.update(self._info)
h.update(bytes([counter]))
output.append(h.finalize())
counter += 1
return b"".join(output)[: self._length]
def derive(self, key_material: bytes) -> bytes:
utils._check_byteslike("key_material", key_material)
if self._used:
raise AlreadyFinalized
self._used = True
return self._expand(key_material)
def verify(self, key_material: bytes, expected_key: bytes) -> None:
if not constant_time.bytes_eq(self.derive(key_material), expected_key):
raise InvalidKey

View File

@@ -0,0 +1,258 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized,
InvalidKey,
UnsupportedAlgorithm,
_Reasons,
)
from cryptography.hazmat.primitives import (
ciphers,
cmac,
constant_time,
hashes,
hmac,
)
from cryptography.hazmat.primitives.kdf import KeyDerivationFunction
class Mode(utils.Enum):
CounterMode = "ctr"
class CounterLocation(utils.Enum):
BeforeFixed = "before_fixed"
AfterFixed = "after_fixed"
class _KBKDFDeriver:
def __init__(
self,
prf: typing.Callable,
mode: Mode,
length: int,
rlen: int,
llen: typing.Optional[int],
location: CounterLocation,
label: typing.Optional[bytes],
context: typing.Optional[bytes],
fixed: typing.Optional[bytes],
):
assert callable(prf)
if not isinstance(mode, Mode):
raise TypeError("mode must be of type Mode")
if not isinstance(location, CounterLocation):
raise TypeError("location must be of type CounterLocation")
if (label or context) and fixed:
raise ValueError(
"When supplying fixed data, " "label and context are ignored."
)
if rlen is None or not self._valid_byte_length(rlen):
raise ValueError("rlen must be between 1 and 4")
if llen is None and fixed is None:
raise ValueError("Please specify an llen")
if llen is not None and not isinstance(llen, int):
raise TypeError("llen must be an integer")
if label is None:
label = b""
if context is None:
context = b""
utils._check_bytes("label", label)
utils._check_bytes("context", context)
self._prf = prf
self._mode = mode
self._length = length
self._rlen = rlen
self._llen = llen
self._location = location
self._label = label
self._context = context
self._used = False
self._fixed_data = fixed
@staticmethod
def _valid_byte_length(value: int) -> bool:
if not isinstance(value, int):
raise TypeError("value must be of type int")
value_bin = utils.int_to_bytes(1, value)
if not 1 <= len(value_bin) <= 4:
return False
return True
def derive(self, key_material: bytes, prf_output_size: int) -> bytes:
if self._used:
raise AlreadyFinalized
utils._check_byteslike("key_material", key_material)
self._used = True
# inverse floor division (equivalent to ceiling)
rounds = -(-self._length // prf_output_size)
output = [b""]
# For counter mode, the number of iterations shall not be
# larger than 2^r-1, where r <= 32 is the binary length of the counter
# This ensures that the counter values used as an input to the
# PRF will not repeat during a particular call to the KDF function.
r_bin = utils.int_to_bytes(1, self._rlen)
if rounds > pow(2, len(r_bin) * 8) - 1:
raise ValueError("There are too many iterations.")
for i in range(1, rounds + 1):
h = self._prf(key_material)
counter = utils.int_to_bytes(i, self._rlen)
if self._location == CounterLocation.BeforeFixed:
h.update(counter)
h.update(self._generate_fixed_input())
if self._location == CounterLocation.AfterFixed:
h.update(counter)
output.append(h.finalize())
return b"".join(output)[: self._length]
def _generate_fixed_input(self) -> bytes:
if self._fixed_data and isinstance(self._fixed_data, bytes):
return self._fixed_data
l_val = utils.int_to_bytes(self._length * 8, self._llen)
return b"".join([self._label, b"\x00", self._context, l_val])
class KBKDFHMAC(KeyDerivationFunction):
def __init__(
self,
algorithm: hashes.HashAlgorithm,
mode: Mode,
length: int,
rlen: int,
llen: typing.Optional[int],
location: CounterLocation,
label: typing.Optional[bytes],
context: typing.Optional[bytes],
fixed: typing.Optional[bytes],
backend: typing.Any = None,
):
if not isinstance(algorithm, hashes.HashAlgorithm):
raise UnsupportedAlgorithm(
"Algorithm supplied is not a supported hash algorithm.",
_Reasons.UNSUPPORTED_HASH,
)
from cryptography.hazmat.backends.openssl.backend import (
backend as ossl,
)
if not ossl.hmac_supported(algorithm):
raise UnsupportedAlgorithm(
"Algorithm supplied is not a supported hmac algorithm.",
_Reasons.UNSUPPORTED_HASH,
)
self._algorithm = algorithm
self._deriver = _KBKDFDeriver(
self._prf,
mode,
length,
rlen,
llen,
location,
label,
context,
fixed,
)
def _prf(self, key_material: bytes) -> hmac.HMAC:
return hmac.HMAC(key_material, self._algorithm)
def derive(self, key_material: bytes) -> bytes:
return self._deriver.derive(key_material, self._algorithm.digest_size)
def verify(self, key_material: bytes, expected_key: bytes) -> None:
if not constant_time.bytes_eq(self.derive(key_material), expected_key):
raise InvalidKey
class KBKDFCMAC(KeyDerivationFunction):
def __init__(
self,
algorithm,
mode: Mode,
length: int,
rlen: int,
llen: typing.Optional[int],
location: CounterLocation,
label: typing.Optional[bytes],
context: typing.Optional[bytes],
fixed: typing.Optional[bytes],
backend: typing.Any = None,
):
if not issubclass(
algorithm, ciphers.BlockCipherAlgorithm
) or not issubclass(algorithm, ciphers.CipherAlgorithm):
raise UnsupportedAlgorithm(
"Algorithm supplied is not a supported cipher algorithm.",
_Reasons.UNSUPPORTED_CIPHER,
)
self._algorithm = algorithm
self._cipher: typing.Optional[ciphers.BlockCipherAlgorithm] = None
self._deriver = _KBKDFDeriver(
self._prf,
mode,
length,
rlen,
llen,
location,
label,
context,
fixed,
)
def _prf(self, _: bytes) -> cmac.CMAC:
assert self._cipher is not None
return cmac.CMAC(self._cipher)
def derive(self, key_material: bytes) -> bytes:
self._cipher = self._algorithm(key_material)
assert self._cipher is not None
from cryptography.hazmat.backends.openssl.backend import (
backend as ossl,
)
if not ossl.cmac_algorithm_supported(self._cipher):
raise UnsupportedAlgorithm(
"Algorithm supplied is not a supported cipher algorithm.",
_Reasons.UNSUPPORTED_CIPHER,
)
return self._deriver.derive(key_material, self._cipher.block_size // 8)
def verify(self, key_material: bytes, expected_key: bytes) -> None:
if not constant_time.bytes_eq(self.derive(key_material), expected_key):
raise InvalidKey

View File

@@ -0,0 +1,65 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized,
InvalidKey,
UnsupportedAlgorithm,
_Reasons,
)
from cryptography.hazmat.primitives import constant_time, hashes
from cryptography.hazmat.primitives.kdf import KeyDerivationFunction
class PBKDF2HMAC(KeyDerivationFunction):
def __init__(
self,
algorithm: hashes.HashAlgorithm,
length: int,
salt: bytes,
iterations: int,
backend: typing.Any = None,
):
from cryptography.hazmat.backends.openssl.backend import (
backend as ossl,
)
if not ossl.pbkdf2_hmac_supported(algorithm):
raise UnsupportedAlgorithm(
"{} is not supported for PBKDF2 by this backend.".format(
algorithm.name
),
_Reasons.UNSUPPORTED_HASH,
)
self._used = False
self._algorithm = algorithm
self._length = length
utils._check_bytes("salt", salt)
self._salt = salt
self._iterations = iterations
def derive(self, key_material: bytes) -> bytes:
if self._used:
raise AlreadyFinalized("PBKDF2 instances can only be used once.")
self._used = True
utils._check_byteslike("key_material", key_material)
from cryptography.hazmat.backends.openssl.backend import backend
return backend.derive_pbkdf2_hmac(
self._algorithm,
self._length,
self._salt,
self._iterations,
key_material,
)
def verify(self, key_material: bytes, expected_key: bytes) -> None:
derived_key = self.derive(key_material)
if not constant_time.bytes_eq(derived_key, expected_key):
raise InvalidKey("Keys do not match.")

View File

@@ -0,0 +1,74 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import sys
import typing
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized,
InvalidKey,
UnsupportedAlgorithm,
)
from cryptography.hazmat.primitives import constant_time
from cryptography.hazmat.primitives.kdf import KeyDerivationFunction
# This is used by the scrypt tests to skip tests that require more memory
# than the MEM_LIMIT
_MEM_LIMIT = sys.maxsize // 2
class Scrypt(KeyDerivationFunction):
def __init__(
self,
salt: bytes,
length: int,
n: int,
r: int,
p: int,
backend: typing.Any = None,
):
from cryptography.hazmat.backends.openssl.backend import (
backend as ossl,
)
if not ossl.scrypt_supported():
raise UnsupportedAlgorithm(
"This version of OpenSSL does not support scrypt"
)
self._length = length
utils._check_bytes("salt", salt)
if n < 2 or (n & (n - 1)) != 0:
raise ValueError("n must be greater than 1 and be a power of 2.")
if r < 1:
raise ValueError("r must be greater than or equal to 1.")
if p < 1:
raise ValueError("p must be greater than or equal to 1.")
self._used = False
self._salt = salt
self._n = n
self._r = r
self._p = p
def derive(self, key_material: bytes) -> bytes:
if self._used:
raise AlreadyFinalized("Scrypt instances can only be used once.")
self._used = True
utils._check_byteslike("key_material", key_material)
from cryptography.hazmat.backends.openssl.backend import backend
return backend.derive_scrypt(
key_material, self._salt, self._length, self._n, self._r, self._p
)
def verify(self, key_material: bytes, expected_key: bytes) -> None:
derived_key = self.derive(key_material)
if not constant_time.bytes_eq(derived_key, expected_key):
raise InvalidKey("Keys do not match.")

View File

@@ -0,0 +1,65 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized,
InvalidKey,
)
from cryptography.hazmat.primitives import constant_time, hashes
from cryptography.hazmat.primitives.kdf import KeyDerivationFunction
def _int_to_u32be(n: int) -> bytes:
return n.to_bytes(length=4, byteorder="big")
class X963KDF(KeyDerivationFunction):
def __init__(
self,
algorithm: hashes.HashAlgorithm,
length: int,
sharedinfo: typing.Optional[bytes],
backend: typing.Any = None,
):
max_len = algorithm.digest_size * (2**32 - 1)
if length > max_len:
raise ValueError(
"Cannot derive keys larger than {} bits.".format(max_len)
)
if sharedinfo is not None:
utils._check_bytes("sharedinfo", sharedinfo)
self._algorithm = algorithm
self._length = length
self._sharedinfo = sharedinfo
self._used = False
def derive(self, key_material: bytes) -> bytes:
if self._used:
raise AlreadyFinalized
self._used = True
utils._check_byteslike("key_material", key_material)
output = [b""]
outlen = 0
counter = 1
while self._length > outlen:
h = hashes.Hash(self._algorithm)
h.update(key_material)
h.update(_int_to_u32be(counter))
if self._sharedinfo is not None:
h.update(self._sharedinfo)
output.append(h.finalize())
outlen += len(output[-1])
counter += 1
return b"".join(output)[: self._length]
def verify(self, key_material: bytes, expected_key: bytes) -> None:
if not constant_time.bytes_eq(self.derive(key_material), expected_key):
raise InvalidKey

View File

@@ -0,0 +1,176 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography.hazmat.primitives.ciphers import Cipher
from cryptography.hazmat.primitives.ciphers.algorithms import AES
from cryptography.hazmat.primitives.ciphers.modes import ECB
from cryptography.hazmat.primitives.constant_time import bytes_eq
def _wrap_core(
wrapping_key: bytes,
a: bytes,
r: typing.List[bytes],
) -> bytes:
# RFC 3394 Key Wrap - 2.2.1 (index method)
encryptor = Cipher(AES(wrapping_key), ECB()).encryptor()
n = len(r)
for j in range(6):
for i in range(n):
# every encryption operation is a discrete 16 byte chunk (because
# AES has a 128-bit block size) and since we're using ECB it is
# safe to reuse the encryptor for the entire operation
b = encryptor.update(a + r[i])
a = (
int.from_bytes(b[:8], byteorder="big") ^ ((n * j) + i + 1)
).to_bytes(length=8, byteorder="big")
r[i] = b[-8:]
assert encryptor.finalize() == b""
return a + b"".join(r)
def aes_key_wrap(
wrapping_key: bytes,
key_to_wrap: bytes,
backend: typing.Any = None,
) -> bytes:
if len(wrapping_key) not in [16, 24, 32]:
raise ValueError("The wrapping key must be a valid AES key length")
if len(key_to_wrap) < 16:
raise ValueError("The key to wrap must be at least 16 bytes")
if len(key_to_wrap) % 8 != 0:
raise ValueError("The key to wrap must be a multiple of 8 bytes")
a = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"
r = [key_to_wrap[i : i + 8] for i in range(0, len(key_to_wrap), 8)]
return _wrap_core(wrapping_key, a, r)
def _unwrap_core(
wrapping_key: bytes,
a: bytes,
r: typing.List[bytes],
) -> typing.Tuple[bytes, typing.List[bytes]]:
# Implement RFC 3394 Key Unwrap - 2.2.2 (index method)
decryptor = Cipher(AES(wrapping_key), ECB()).decryptor()
n = len(r)
for j in reversed(range(6)):
for i in reversed(range(n)):
atr = (
int.from_bytes(a, byteorder="big") ^ ((n * j) + i + 1)
).to_bytes(length=8, byteorder="big") + r[i]
# every decryption operation is a discrete 16 byte chunk so
# it is safe to reuse the decryptor for the entire operation
b = decryptor.update(atr)
a = b[:8]
r[i] = b[-8:]
assert decryptor.finalize() == b""
return a, r
def aes_key_wrap_with_padding(
wrapping_key: bytes,
key_to_wrap: bytes,
backend: typing.Any = None,
) -> bytes:
if len(wrapping_key) not in [16, 24, 32]:
raise ValueError("The wrapping key must be a valid AES key length")
aiv = b"\xA6\x59\x59\xA6" + len(key_to_wrap).to_bytes(
length=4, byteorder="big"
)
# pad the key to wrap if necessary
pad = (8 - (len(key_to_wrap) % 8)) % 8
key_to_wrap = key_to_wrap + b"\x00" * pad
if len(key_to_wrap) == 8:
# RFC 5649 - 4.1 - exactly 8 octets after padding
encryptor = Cipher(AES(wrapping_key), ECB()).encryptor()
b = encryptor.update(aiv + key_to_wrap)
assert encryptor.finalize() == b""
return b
else:
r = [key_to_wrap[i : i + 8] for i in range(0, len(key_to_wrap), 8)]
return _wrap_core(wrapping_key, aiv, r)
def aes_key_unwrap_with_padding(
wrapping_key: bytes,
wrapped_key: bytes,
backend: typing.Any = None,
) -> bytes:
if len(wrapped_key) < 16:
raise InvalidUnwrap("Must be at least 16 bytes")
if len(wrapping_key) not in [16, 24, 32]:
raise ValueError("The wrapping key must be a valid AES key length")
if len(wrapped_key) == 16:
# RFC 5649 - 4.2 - exactly two 64-bit blocks
decryptor = Cipher(AES(wrapping_key), ECB()).decryptor()
out = decryptor.update(wrapped_key)
assert decryptor.finalize() == b""
a = out[:8]
data = out[8:]
n = 1
else:
r = [wrapped_key[i : i + 8] for i in range(0, len(wrapped_key), 8)]
encrypted_aiv = r.pop(0)
n = len(r)
a, r = _unwrap_core(wrapping_key, encrypted_aiv, r)
data = b"".join(r)
# 1) Check that MSB(32,A) = A65959A6.
# 2) Check that 8*(n-1) < LSB(32,A) <= 8*n. If so, let
# MLI = LSB(32,A).
# 3) Let b = (8*n)-MLI, and then check that the rightmost b octets of
# the output data are zero.
mli = int.from_bytes(a[4:], byteorder="big")
b = (8 * n) - mli
if (
not bytes_eq(a[:4], b"\xa6\x59\x59\xa6")
or not 8 * (n - 1) < mli <= 8 * n
or (b != 0 and not bytes_eq(data[-b:], b"\x00" * b))
):
raise InvalidUnwrap()
if b == 0:
return data
else:
return data[:-b]
def aes_key_unwrap(
wrapping_key: bytes,
wrapped_key: bytes,
backend: typing.Any = None,
) -> bytes:
if len(wrapped_key) < 24:
raise InvalidUnwrap("Must be at least 24 bytes")
if len(wrapped_key) % 8 != 0:
raise InvalidUnwrap("The wrapped key must be a multiple of 8 bytes")
if len(wrapping_key) not in [16, 24, 32]:
raise ValueError("The wrapping key must be a valid AES key length")
aiv = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"
r = [wrapped_key[i : i + 8] for i in range(0, len(wrapped_key), 8)]
a = r.pop(0)
a, r = _unwrap_core(wrapping_key, a, r)
if not bytes_eq(a, aiv):
raise InvalidUnwrap()
return b"".join(r)
class InvalidUnwrap(Exception):
pass

View File

@@ -0,0 +1,224 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
import typing
from cryptography import utils
from cryptography.exceptions import AlreadyFinalized
from cryptography.hazmat.bindings._rust import (
check_ansix923_padding,
check_pkcs7_padding,
)
class PaddingContext(metaclass=abc.ABCMeta):
@abc.abstractmethod
def update(self, data: bytes) -> bytes:
"""
Pads the provided bytes and returns any available data as bytes.
"""
@abc.abstractmethod
def finalize(self) -> bytes:
"""
Finalize the padding, returns bytes.
"""
def _byte_padding_check(block_size: int) -> None:
if not (0 <= block_size <= 2040):
raise ValueError("block_size must be in range(0, 2041).")
if block_size % 8 != 0:
raise ValueError("block_size must be a multiple of 8.")
def _byte_padding_update(
buffer_: typing.Optional[bytes], data: bytes, block_size: int
) -> typing.Tuple[bytes, bytes]:
if buffer_ is None:
raise AlreadyFinalized("Context was already finalized.")
utils._check_byteslike("data", data)
buffer_ += bytes(data)
finished_blocks = len(buffer_) // (block_size // 8)
result = buffer_[: finished_blocks * (block_size // 8)]
buffer_ = buffer_[finished_blocks * (block_size // 8) :]
return buffer_, result
def _byte_padding_pad(
buffer_: typing.Optional[bytes],
block_size: int,
paddingfn: typing.Callable[[int], bytes],
) -> bytes:
if buffer_ is None:
raise AlreadyFinalized("Context was already finalized.")
pad_size = block_size // 8 - len(buffer_)
return buffer_ + paddingfn(pad_size)
def _byte_unpadding_update(
buffer_: typing.Optional[bytes], data: bytes, block_size: int
) -> typing.Tuple[bytes, bytes]:
if buffer_ is None:
raise AlreadyFinalized("Context was already finalized.")
utils._check_byteslike("data", data)
buffer_ += bytes(data)
finished_blocks = max(len(buffer_) // (block_size // 8) - 1, 0)
result = buffer_[: finished_blocks * (block_size // 8)]
buffer_ = buffer_[finished_blocks * (block_size // 8) :]
return buffer_, result
def _byte_unpadding_check(
buffer_: typing.Optional[bytes],
block_size: int,
checkfn: typing.Callable[[bytes], int],
) -> bytes:
if buffer_ is None:
raise AlreadyFinalized("Context was already finalized.")
if len(buffer_) != block_size // 8:
raise ValueError("Invalid padding bytes.")
valid = checkfn(buffer_)
if not valid:
raise ValueError("Invalid padding bytes.")
pad_size = buffer_[-1]
return buffer_[:-pad_size]
class PKCS7:
def __init__(self, block_size: int):
_byte_padding_check(block_size)
self.block_size = block_size
def padder(self) -> PaddingContext:
return _PKCS7PaddingContext(self.block_size)
def unpadder(self) -> PaddingContext:
return _PKCS7UnpaddingContext(self.block_size)
class _PKCS7PaddingContext(PaddingContext):
_buffer: typing.Optional[bytes]
def __init__(self, block_size: int):
self.block_size = block_size
# TODO: more copies than necessary, we should use zero-buffer (#193)
self._buffer = b""
def update(self, data: bytes) -> bytes:
self._buffer, result = _byte_padding_update(
self._buffer, data, self.block_size
)
return result
def _padding(self, size: int) -> bytes:
return bytes([size]) * size
def finalize(self) -> bytes:
result = _byte_padding_pad(
self._buffer, self.block_size, self._padding
)
self._buffer = None
return result
class _PKCS7UnpaddingContext(PaddingContext):
_buffer: typing.Optional[bytes]
def __init__(self, block_size: int):
self.block_size = block_size
# TODO: more copies than necessary, we should use zero-buffer (#193)
self._buffer = b""
def update(self, data: bytes) -> bytes:
self._buffer, result = _byte_unpadding_update(
self._buffer, data, self.block_size
)
return result
def finalize(self) -> bytes:
result = _byte_unpadding_check(
self._buffer, self.block_size, check_pkcs7_padding
)
self._buffer = None
return result
class ANSIX923:
def __init__(self, block_size: int):
_byte_padding_check(block_size)
self.block_size = block_size
def padder(self) -> PaddingContext:
return _ANSIX923PaddingContext(self.block_size)
def unpadder(self) -> PaddingContext:
return _ANSIX923UnpaddingContext(self.block_size)
class _ANSIX923PaddingContext(PaddingContext):
_buffer: typing.Optional[bytes]
def __init__(self, block_size: int):
self.block_size = block_size
# TODO: more copies than necessary, we should use zero-buffer (#193)
self._buffer = b""
def update(self, data: bytes) -> bytes:
self._buffer, result = _byte_padding_update(
self._buffer, data, self.block_size
)
return result
def _padding(self, size: int) -> bytes:
return bytes([0]) * (size - 1) + bytes([size])
def finalize(self) -> bytes:
result = _byte_padding_pad(
self._buffer, self.block_size, self._padding
)
self._buffer = None
return result
class _ANSIX923UnpaddingContext(PaddingContext):
_buffer: typing.Optional[bytes]
def __init__(self, block_size: int):
self.block_size = block_size
# TODO: more copies than necessary, we should use zero-buffer (#193)
self._buffer = b""
def update(self, data: bytes) -> bytes:
self._buffer, result = _byte_unpadding_update(
self._buffer, data, self.block_size
)
return result
def finalize(self) -> bytes:
result = _byte_unpadding_check(
self._buffer,
self.block_size,
check_ansix923_padding,
)
self._buffer = None
return result

View File

@@ -0,0 +1,60 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized,
UnsupportedAlgorithm,
_Reasons,
)
from cryptography.hazmat.backends.openssl.poly1305 import _Poly1305Context
class Poly1305:
_ctx: typing.Optional[_Poly1305Context]
def __init__(self, key: bytes):
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.poly1305_supported():
raise UnsupportedAlgorithm(
"poly1305 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_MAC,
)
self._ctx = backend.create_poly1305_ctx(key)
def update(self, data: bytes) -> None:
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
utils._check_byteslike("data", data)
self._ctx.update(data)
def finalize(self) -> bytes:
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
mac = self._ctx.finalize()
self._ctx = None
return mac
def verify(self, tag: bytes) -> None:
utils._check_bytes("tag", tag)
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
ctx, self._ctx = self._ctx, None
ctx.verify(tag)
@classmethod
def generate_tag(cls, key: bytes, data: bytes) -> bytes:
p = Poly1305(key)
p.update(data)
return p.finalize()
@classmethod
def verify_tag(cls, key: bytes, data: bytes, tag: bytes) -> None:
p = Poly1305(key)
p.update(data)
p.verify(tag)

View File

@@ -0,0 +1,45 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from cryptography.hazmat.primitives._serialization import (
BestAvailableEncryption,
Encoding,
KeySerializationEncryption,
NoEncryption,
ParameterFormat,
PrivateFormat,
PublicFormat,
)
from cryptography.hazmat.primitives.serialization.base import (
load_der_parameters,
load_der_private_key,
load_der_public_key,
load_pem_parameters,
load_pem_private_key,
load_pem_public_key,
)
from cryptography.hazmat.primitives.serialization.ssh import (
load_ssh_private_key,
load_ssh_public_key,
)
__all__ = [
"load_der_parameters",
"load_der_private_key",
"load_der_public_key",
"load_pem_parameters",
"load_pem_private_key",
"load_pem_public_key",
"load_ssh_private_key",
"load_ssh_public_key",
"Encoding",
"PrivateFormat",
"PublicFormat",
"ParameterFormat",
"KeySerializationEncryption",
"BestAvailableEncryption",
"NoEncryption",
]

View File

@@ -0,0 +1,64 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography.hazmat.primitives.asymmetric import dh
from cryptography.hazmat.primitives.asymmetric.types import (
PRIVATE_KEY_TYPES,
PUBLIC_KEY_TYPES,
)
def load_pem_private_key(
data: bytes,
password: typing.Optional[bytes],
backend: typing.Any = None,
) -> PRIVATE_KEY_TYPES:
from cryptography.hazmat.backends.openssl.backend import backend as ossl
return ossl.load_pem_private_key(data, password)
def load_pem_public_key(
data: bytes, backend: typing.Any = None
) -> PUBLIC_KEY_TYPES:
from cryptography.hazmat.backends.openssl.backend import backend as ossl
return ossl.load_pem_public_key(data)
def load_pem_parameters(
data: bytes, backend: typing.Any = None
) -> "dh.DHParameters":
from cryptography.hazmat.backends.openssl.backend import backend as ossl
return ossl.load_pem_parameters(data)
def load_der_private_key(
data: bytes,
password: typing.Optional[bytes],
backend: typing.Any = None,
) -> PRIVATE_KEY_TYPES:
from cryptography.hazmat.backends.openssl.backend import backend as ossl
return ossl.load_der_private_key(data, password)
def load_der_public_key(
data: bytes, backend: typing.Any = None
) -> PUBLIC_KEY_TYPES:
from cryptography.hazmat.backends.openssl.backend import backend as ossl
return ossl.load_der_public_key(data)
def load_der_parameters(
data: bytes, backend: typing.Any = None
) -> "dh.DHParameters":
from cryptography.hazmat.backends.openssl.backend import backend as ossl
return ossl.load_der_parameters(data)

View File

@@ -0,0 +1,219 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography import x509
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric import (
dsa,
ec,
ed25519,
ed448,
rsa,
)
from cryptography.hazmat.primitives.asymmetric.types import (
PRIVATE_KEY_TYPES,
)
_ALLOWED_PKCS12_TYPES = typing.Union[
rsa.RSAPrivateKey,
dsa.DSAPrivateKey,
ec.EllipticCurvePrivateKey,
ed25519.Ed25519PrivateKey,
ed448.Ed448PrivateKey,
]
class PKCS12Certificate:
def __init__(
self,
cert: x509.Certificate,
friendly_name: typing.Optional[bytes],
):
if not isinstance(cert, x509.Certificate):
raise TypeError("Expecting x509.Certificate object")
if friendly_name is not None and not isinstance(friendly_name, bytes):
raise TypeError("friendly_name must be bytes or None")
self._cert = cert
self._friendly_name = friendly_name
@property
def friendly_name(self) -> typing.Optional[bytes]:
return self._friendly_name
@property
def certificate(self) -> x509.Certificate:
return self._cert
def __eq__(self, other: object) -> bool:
if not isinstance(other, PKCS12Certificate):
return NotImplemented
return (
self.certificate == other.certificate
and self.friendly_name == other.friendly_name
)
def __hash__(self) -> int:
return hash((self.certificate, self.friendly_name))
def __repr__(self) -> str:
return "<PKCS12Certificate({}, friendly_name={!r})>".format(
self.certificate, self.friendly_name
)
class PKCS12KeyAndCertificates:
def __init__(
self,
key: typing.Optional[PRIVATE_KEY_TYPES],
cert: typing.Optional[PKCS12Certificate],
additional_certs: typing.List[PKCS12Certificate],
):
if key is not None and not isinstance(
key,
(
rsa.RSAPrivateKey,
dsa.DSAPrivateKey,
ec.EllipticCurvePrivateKey,
ed25519.Ed25519PrivateKey,
ed448.Ed448PrivateKey,
),
):
raise TypeError(
"Key must be RSA, DSA, EllipticCurve, ED25519, or ED448"
" private key, or None."
)
if cert is not None and not isinstance(cert, PKCS12Certificate):
raise TypeError("cert must be a PKCS12Certificate object or None")
if not all(
isinstance(add_cert, PKCS12Certificate)
for add_cert in additional_certs
):
raise TypeError(
"all values in additional_certs must be PKCS12Certificate"
" objects"
)
self._key = key
self._cert = cert
self._additional_certs = additional_certs
@property
def key(self) -> typing.Optional[PRIVATE_KEY_TYPES]:
return self._key
@property
def cert(self) -> typing.Optional[PKCS12Certificate]:
return self._cert
@property
def additional_certs(self) -> typing.List[PKCS12Certificate]:
return self._additional_certs
def __eq__(self, other: object) -> bool:
if not isinstance(other, PKCS12KeyAndCertificates):
return NotImplemented
return (
self.key == other.key
and self.cert == other.cert
and self.additional_certs == other.additional_certs
)
def __hash__(self) -> int:
return hash((self.key, self.cert, tuple(self.additional_certs)))
def __repr__(self) -> str:
fmt = (
"<PKCS12KeyAndCertificates(key={}, cert={}, additional_certs={})>"
)
return fmt.format(self.key, self.cert, self.additional_certs)
def load_key_and_certificates(
data: bytes,
password: typing.Optional[bytes],
backend: typing.Any = None,
) -> typing.Tuple[
typing.Optional[PRIVATE_KEY_TYPES],
typing.Optional[x509.Certificate],
typing.List[x509.Certificate],
]:
from cryptography.hazmat.backends.openssl.backend import backend as ossl
return ossl.load_key_and_certificates_from_pkcs12(data, password)
def load_pkcs12(
data: bytes,
password: typing.Optional[bytes],
backend: typing.Any = None,
) -> PKCS12KeyAndCertificates:
from cryptography.hazmat.backends.openssl.backend import backend as ossl
return ossl.load_pkcs12(data, password)
_PKCS12_CAS_TYPES = typing.Union[
x509.Certificate,
PKCS12Certificate,
]
def serialize_key_and_certificates(
name: typing.Optional[bytes],
key: typing.Optional[_ALLOWED_PKCS12_TYPES],
cert: typing.Optional[x509.Certificate],
cas: typing.Optional[typing.Iterable[_PKCS12_CAS_TYPES]],
encryption_algorithm: serialization.KeySerializationEncryption,
) -> bytes:
if key is not None and not isinstance(
key,
(
rsa.RSAPrivateKey,
dsa.DSAPrivateKey,
ec.EllipticCurvePrivateKey,
ed25519.Ed25519PrivateKey,
ed448.Ed448PrivateKey,
),
):
raise TypeError(
"Key must be RSA, DSA, EllipticCurve, ED25519, or ED448"
" private key, or None."
)
if cert is not None and not isinstance(cert, x509.Certificate):
raise TypeError("cert must be a certificate or None")
if cas is not None:
cas = list(cas)
if not all(
isinstance(
val,
(
x509.Certificate,
PKCS12Certificate,
),
)
for val in cas
):
raise TypeError("all values in cas must be certificates")
if not isinstance(
encryption_algorithm, serialization.KeySerializationEncryption
):
raise TypeError(
"Key encryption algorithm must be a "
"KeySerializationEncryption instance"
)
if key is None and cert is None and not cas:
raise ValueError("You must supply at least one of key, cert, or cas")
from cryptography.hazmat.backends.openssl.backend import backend
return backend.serialize_key_and_certificates_to_pkcs12(
name, key, cert, cas, encryption_algorithm
)

View File

@@ -0,0 +1,180 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography import utils
from cryptography import x509
from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric import ec, rsa
from cryptography.utils import _check_byteslike
def load_pem_pkcs7_certificates(data: bytes) -> typing.List[x509.Certificate]:
from cryptography.hazmat.backends.openssl.backend import backend
return backend.load_pem_pkcs7_certificates(data)
def load_der_pkcs7_certificates(data: bytes) -> typing.List[x509.Certificate]:
from cryptography.hazmat.backends.openssl.backend import backend
return backend.load_der_pkcs7_certificates(data)
def serialize_certificates(
certs: typing.List[x509.Certificate],
encoding: serialization.Encoding,
) -> bytes:
from cryptography.hazmat.backends.openssl.backend import backend
return backend.pkcs7_serialize_certificates(certs, encoding)
_ALLOWED_PKCS7_HASH_TYPES = typing.Union[
hashes.SHA1,
hashes.SHA224,
hashes.SHA256,
hashes.SHA384,
hashes.SHA512,
]
_ALLOWED_PRIVATE_KEY_TYPES = typing.Union[
rsa.RSAPrivateKey, ec.EllipticCurvePrivateKey
]
class PKCS7Options(utils.Enum):
Text = "Add text/plain MIME type"
Binary = "Don't translate input data into canonical MIME format"
DetachedSignature = "Don't embed data in the PKCS7 structure"
NoCapabilities = "Don't embed SMIME capabilities"
NoAttributes = "Don't embed authenticatedAttributes"
NoCerts = "Don't embed signer certificate"
class PKCS7SignatureBuilder:
def __init__(
self,
data: typing.Optional[bytes] = None,
signers: typing.List[
typing.Tuple[
x509.Certificate,
_ALLOWED_PRIVATE_KEY_TYPES,
_ALLOWED_PKCS7_HASH_TYPES,
]
] = [],
additional_certs: typing.List[x509.Certificate] = [],
):
self._data = data
self._signers = signers
self._additional_certs = additional_certs
def set_data(self, data: bytes) -> "PKCS7SignatureBuilder":
_check_byteslike("data", data)
if self._data is not None:
raise ValueError("data may only be set once")
return PKCS7SignatureBuilder(data, self._signers)
def add_signer(
self,
certificate: x509.Certificate,
private_key: _ALLOWED_PRIVATE_KEY_TYPES,
hash_algorithm: _ALLOWED_PKCS7_HASH_TYPES,
) -> "PKCS7SignatureBuilder":
if not isinstance(
hash_algorithm,
(
hashes.SHA1,
hashes.SHA224,
hashes.SHA256,
hashes.SHA384,
hashes.SHA512,
),
):
raise TypeError(
"hash_algorithm must be one of hashes.SHA1, SHA224, "
"SHA256, SHA384, or SHA512"
)
if not isinstance(certificate, x509.Certificate):
raise TypeError("certificate must be a x509.Certificate")
if not isinstance(
private_key, (rsa.RSAPrivateKey, ec.EllipticCurvePrivateKey)
):
raise TypeError("Only RSA & EC keys are supported at this time.")
return PKCS7SignatureBuilder(
self._data,
self._signers + [(certificate, private_key, hash_algorithm)],
)
def add_certificate(
self, certificate: x509.Certificate
) -> "PKCS7SignatureBuilder":
if not isinstance(certificate, x509.Certificate):
raise TypeError("certificate must be a x509.Certificate")
return PKCS7SignatureBuilder(
self._data, self._signers, self._additional_certs + [certificate]
)
def sign(
self,
encoding: serialization.Encoding,
options: typing.Iterable[PKCS7Options],
backend: typing.Any = None,
) -> bytes:
if len(self._signers) == 0:
raise ValueError("Must have at least one signer")
if self._data is None:
raise ValueError("You must add data to sign")
options = list(options)
if not all(isinstance(x, PKCS7Options) for x in options):
raise ValueError("options must be from the PKCS7Options enum")
if encoding not in (
serialization.Encoding.PEM,
serialization.Encoding.DER,
serialization.Encoding.SMIME,
):
raise ValueError(
"Must be PEM, DER, or SMIME from the Encoding enum"
)
# Text is a meaningless option unless it is accompanied by
# DetachedSignature
if (
PKCS7Options.Text in options
and PKCS7Options.DetachedSignature not in options
):
raise ValueError(
"When passing the Text option you must also pass "
"DetachedSignature"
)
if PKCS7Options.Text in options and encoding in (
serialization.Encoding.DER,
serialization.Encoding.PEM,
):
raise ValueError(
"The Text option is only available for SMIME serialization"
)
# No attributes implies no capabilities so we'll error if you try to
# pass both.
if (
PKCS7Options.NoAttributes in options
and PKCS7Options.NoCapabilities in options
):
raise ValueError(
"NoAttributes is a superset of NoCapabilities. Do not pass "
"both values."
)
from cryptography.hazmat.backends.openssl.backend import (
backend as ossl,
)
return ossl.pkcs7_sign(self, encoding, options)

View File

@@ -0,0 +1,757 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import binascii
import os
import re
import typing
from base64 import encodebytes as _base64_encode
from cryptography import utils
from cryptography.exceptions import UnsupportedAlgorithm
from cryptography.hazmat.primitives.asymmetric import dsa, ec, ed25519, rsa
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.primitives.serialization import (
Encoding,
NoEncryption,
PrivateFormat,
PublicFormat,
)
try:
from bcrypt import kdf as _bcrypt_kdf
_bcrypt_supported = True
except ImportError:
_bcrypt_supported = False
def _bcrypt_kdf(
password: bytes,
salt: bytes,
desired_key_bytes: int,
rounds: int,
ignore_few_rounds: bool = False,
) -> bytes:
raise UnsupportedAlgorithm("Need bcrypt module")
_SSH_ED25519 = b"ssh-ed25519"
_SSH_RSA = b"ssh-rsa"
_SSH_DSA = b"ssh-dss"
_ECDSA_NISTP256 = b"ecdsa-sha2-nistp256"
_ECDSA_NISTP384 = b"ecdsa-sha2-nistp384"
_ECDSA_NISTP521 = b"ecdsa-sha2-nistp521"
_CERT_SUFFIX = b"-cert-v01@openssh.com"
_SSH_PUBKEY_RC = re.compile(rb"\A(\S+)[ \t]+(\S+)")
_SK_MAGIC = b"openssh-key-v1\0"
_SK_START = b"-----BEGIN OPENSSH PRIVATE KEY-----"
_SK_END = b"-----END OPENSSH PRIVATE KEY-----"
_BCRYPT = b"bcrypt"
_NONE = b"none"
_DEFAULT_CIPHER = b"aes256-ctr"
_DEFAULT_ROUNDS = 16
_MAX_PASSWORD = 72
# re is only way to work on bytes-like data
_PEM_RC = re.compile(_SK_START + b"(.*?)" + _SK_END, re.DOTALL)
# padding for max blocksize
_PADDING = memoryview(bytearray(range(1, 1 + 16)))
# ciphers that are actually used in key wrapping
_SSH_CIPHERS: typing.Dict[
bytes,
typing.Tuple[
typing.Type[algorithms.AES],
int,
typing.Union[typing.Type[modes.CTR], typing.Type[modes.CBC]],
int,
],
] = {
b"aes256-ctr": (algorithms.AES, 32, modes.CTR, 16),
b"aes256-cbc": (algorithms.AES, 32, modes.CBC, 16),
}
# map local curve name to key type
_ECDSA_KEY_TYPE = {
"secp256r1": _ECDSA_NISTP256,
"secp384r1": _ECDSA_NISTP384,
"secp521r1": _ECDSA_NISTP521,
}
def _ecdsa_key_type(public_key: ec.EllipticCurvePublicKey) -> bytes:
"""Return SSH key_type and curve_name for private key."""
curve = public_key.curve
if curve.name not in _ECDSA_KEY_TYPE:
raise ValueError(
f"Unsupported curve for ssh private key: {curve.name!r}"
)
return _ECDSA_KEY_TYPE[curve.name]
def _ssh_pem_encode(
data: bytes,
prefix: bytes = _SK_START + b"\n",
suffix: bytes = _SK_END + b"\n",
) -> bytes:
return b"".join([prefix, _base64_encode(data), suffix])
def _check_block_size(data: bytes, block_len: int) -> None:
"""Require data to be full blocks"""
if not data or len(data) % block_len != 0:
raise ValueError("Corrupt data: missing padding")
def _check_empty(data: bytes) -> None:
"""All data should have been parsed."""
if data:
raise ValueError("Corrupt data: unparsed data")
def _init_cipher(
ciphername: bytes,
password: typing.Optional[bytes],
salt: bytes,
rounds: int,
) -> Cipher[typing.Union[modes.CBC, modes.CTR]]:
"""Generate key + iv and return cipher."""
if not password:
raise ValueError("Key is password-protected.")
algo, key_len, mode, iv_len = _SSH_CIPHERS[ciphername]
seed = _bcrypt_kdf(password, salt, key_len + iv_len, rounds, True)
return Cipher(algo(seed[:key_len]), mode(seed[key_len:]))
def _get_u32(data: memoryview) -> typing.Tuple[int, memoryview]:
"""Uint32"""
if len(data) < 4:
raise ValueError("Invalid data")
return int.from_bytes(data[:4], byteorder="big"), data[4:]
def _get_u64(data: memoryview) -> typing.Tuple[int, memoryview]:
"""Uint64"""
if len(data) < 8:
raise ValueError("Invalid data")
return int.from_bytes(data[:8], byteorder="big"), data[8:]
def _get_sshstr(data: memoryview) -> typing.Tuple[memoryview, memoryview]:
"""Bytes with u32 length prefix"""
n, data = _get_u32(data)
if n > len(data):
raise ValueError("Invalid data")
return data[:n], data[n:]
def _get_mpint(data: memoryview) -> typing.Tuple[int, memoryview]:
"""Big integer."""
val, data = _get_sshstr(data)
if val and val[0] > 0x7F:
raise ValueError("Invalid data")
return int.from_bytes(val, "big"), data
def _to_mpint(val: int) -> bytes:
"""Storage format for signed bigint."""
if val < 0:
raise ValueError("negative mpint not allowed")
if not val:
return b""
nbytes = (val.bit_length() + 8) // 8
return utils.int_to_bytes(val, nbytes)
class _FragList:
"""Build recursive structure without data copy."""
flist: typing.List[bytes]
def __init__(self, init: typing.List[bytes] = None) -> None:
self.flist = []
if init:
self.flist.extend(init)
def put_raw(self, val: bytes) -> None:
"""Add plain bytes"""
self.flist.append(val)
def put_u32(self, val: int) -> None:
"""Big-endian uint32"""
self.flist.append(val.to_bytes(length=4, byteorder="big"))
def put_sshstr(self, val: typing.Union[bytes, "_FragList"]) -> None:
"""Bytes prefixed with u32 length"""
if isinstance(val, (bytes, memoryview, bytearray)):
self.put_u32(len(val))
self.flist.append(val)
else:
self.put_u32(val.size())
self.flist.extend(val.flist)
def put_mpint(self, val: int) -> None:
"""Big-endian bigint prefixed with u32 length"""
self.put_sshstr(_to_mpint(val))
def size(self) -> int:
"""Current number of bytes"""
return sum(map(len, self.flist))
def render(self, dstbuf: memoryview, pos: int = 0) -> int:
"""Write into bytearray"""
for frag in self.flist:
flen = len(frag)
start, pos = pos, pos + flen
dstbuf[start:pos] = frag
return pos
def tobytes(self) -> bytes:
"""Return as bytes"""
buf = memoryview(bytearray(self.size()))
self.render(buf)
return buf.tobytes()
class _SSHFormatRSA:
"""Format for RSA keys.
Public:
mpint e, n
Private:
mpint n, e, d, iqmp, p, q
"""
def get_public(self, data: memoryview):
"""RSA public fields"""
e, data = _get_mpint(data)
n, data = _get_mpint(data)
return (e, n), data
def load_public(
self, data: memoryview
) -> typing.Tuple[rsa.RSAPublicKey, memoryview]:
"""Make RSA public key from data."""
(e, n), data = self.get_public(data)
public_numbers = rsa.RSAPublicNumbers(e, n)
public_key = public_numbers.public_key()
return public_key, data
def load_private(
self, data: memoryview, pubfields
) -> typing.Tuple[rsa.RSAPrivateKey, memoryview]:
"""Make RSA private key from data."""
n, data = _get_mpint(data)
e, data = _get_mpint(data)
d, data = _get_mpint(data)
iqmp, data = _get_mpint(data)
p, data = _get_mpint(data)
q, data = _get_mpint(data)
if (e, n) != pubfields:
raise ValueError("Corrupt data: rsa field mismatch")
dmp1 = rsa.rsa_crt_dmp1(d, p)
dmq1 = rsa.rsa_crt_dmq1(d, q)
public_numbers = rsa.RSAPublicNumbers(e, n)
private_numbers = rsa.RSAPrivateNumbers(
p, q, d, dmp1, dmq1, iqmp, public_numbers
)
private_key = private_numbers.private_key()
return private_key, data
def encode_public(
self, public_key: rsa.RSAPublicKey, f_pub: _FragList
) -> None:
"""Write RSA public key"""
pubn = public_key.public_numbers()
f_pub.put_mpint(pubn.e)
f_pub.put_mpint(pubn.n)
def encode_private(
self, private_key: rsa.RSAPrivateKey, f_priv: _FragList
) -> None:
"""Write RSA private key"""
private_numbers = private_key.private_numbers()
public_numbers = private_numbers.public_numbers
f_priv.put_mpint(public_numbers.n)
f_priv.put_mpint(public_numbers.e)
f_priv.put_mpint(private_numbers.d)
f_priv.put_mpint(private_numbers.iqmp)
f_priv.put_mpint(private_numbers.p)
f_priv.put_mpint(private_numbers.q)
class _SSHFormatDSA:
"""Format for DSA keys.
Public:
mpint p, q, g, y
Private:
mpint p, q, g, y, x
"""
def get_public(
self, data: memoryview
) -> typing.Tuple[typing.Tuple, memoryview]:
"""DSA public fields"""
p, data = _get_mpint(data)
q, data = _get_mpint(data)
g, data = _get_mpint(data)
y, data = _get_mpint(data)
return (p, q, g, y), data
def load_public(
self, data: memoryview
) -> typing.Tuple[dsa.DSAPublicKey, memoryview]:
"""Make DSA public key from data."""
(p, q, g, y), data = self.get_public(data)
parameter_numbers = dsa.DSAParameterNumbers(p, q, g)
public_numbers = dsa.DSAPublicNumbers(y, parameter_numbers)
self._validate(public_numbers)
public_key = public_numbers.public_key()
return public_key, data
def load_private(
self, data: memoryview, pubfields
) -> typing.Tuple[dsa.DSAPrivateKey, memoryview]:
"""Make DSA private key from data."""
(p, q, g, y), data = self.get_public(data)
x, data = _get_mpint(data)
if (p, q, g, y) != pubfields:
raise ValueError("Corrupt data: dsa field mismatch")
parameter_numbers = dsa.DSAParameterNumbers(p, q, g)
public_numbers = dsa.DSAPublicNumbers(y, parameter_numbers)
self._validate(public_numbers)
private_numbers = dsa.DSAPrivateNumbers(x, public_numbers)
private_key = private_numbers.private_key()
return private_key, data
def encode_public(
self, public_key: dsa.DSAPublicKey, f_pub: _FragList
) -> None:
"""Write DSA public key"""
public_numbers = public_key.public_numbers()
parameter_numbers = public_numbers.parameter_numbers
self._validate(public_numbers)
f_pub.put_mpint(parameter_numbers.p)
f_pub.put_mpint(parameter_numbers.q)
f_pub.put_mpint(parameter_numbers.g)
f_pub.put_mpint(public_numbers.y)
def encode_private(
self, private_key: dsa.DSAPrivateKey, f_priv: _FragList
) -> None:
"""Write DSA private key"""
self.encode_public(private_key.public_key(), f_priv)
f_priv.put_mpint(private_key.private_numbers().x)
def _validate(self, public_numbers: dsa.DSAPublicNumbers) -> None:
parameter_numbers = public_numbers.parameter_numbers
if parameter_numbers.p.bit_length() != 1024:
raise ValueError("SSH supports only 1024 bit DSA keys")
class _SSHFormatECDSA:
"""Format for ECDSA keys.
Public:
str curve
bytes point
Private:
str curve
bytes point
mpint secret
"""
def __init__(self, ssh_curve_name: bytes, curve: ec.EllipticCurve):
self.ssh_curve_name = ssh_curve_name
self.curve = curve
def get_public(
self, data: memoryview
) -> typing.Tuple[typing.Tuple, memoryview]:
"""ECDSA public fields"""
curve, data = _get_sshstr(data)
point, data = _get_sshstr(data)
if curve != self.ssh_curve_name:
raise ValueError("Curve name mismatch")
if point[0] != 4:
raise NotImplementedError("Need uncompressed point")
return (curve, point), data
def load_public(
self, data: memoryview
) -> typing.Tuple[ec.EllipticCurvePublicKey, memoryview]:
"""Make ECDSA public key from data."""
(curve_name, point), data = self.get_public(data)
public_key = ec.EllipticCurvePublicKey.from_encoded_point(
self.curve, point.tobytes()
)
return public_key, data
def load_private(
self, data: memoryview, pubfields
) -> typing.Tuple[ec.EllipticCurvePrivateKey, memoryview]:
"""Make ECDSA private key from data."""
(curve_name, point), data = self.get_public(data)
secret, data = _get_mpint(data)
if (curve_name, point) != pubfields:
raise ValueError("Corrupt data: ecdsa field mismatch")
private_key = ec.derive_private_key(secret, self.curve)
return private_key, data
def encode_public(
self, public_key: ec.EllipticCurvePublicKey, f_pub: _FragList
) -> None:
"""Write ECDSA public key"""
point = public_key.public_bytes(
Encoding.X962, PublicFormat.UncompressedPoint
)
f_pub.put_sshstr(self.ssh_curve_name)
f_pub.put_sshstr(point)
def encode_private(
self, private_key: ec.EllipticCurvePrivateKey, f_priv: _FragList
) -> None:
"""Write ECDSA private key"""
public_key = private_key.public_key()
private_numbers = private_key.private_numbers()
self.encode_public(public_key, f_priv)
f_priv.put_mpint(private_numbers.private_value)
class _SSHFormatEd25519:
"""Format for Ed25519 keys.
Public:
bytes point
Private:
bytes point
bytes secret_and_point
"""
def get_public(
self, data: memoryview
) -> typing.Tuple[typing.Tuple, memoryview]:
"""Ed25519 public fields"""
point, data = _get_sshstr(data)
return (point,), data
def load_public(
self, data: memoryview
) -> typing.Tuple[ed25519.Ed25519PublicKey, memoryview]:
"""Make Ed25519 public key from data."""
(point,), data = self.get_public(data)
public_key = ed25519.Ed25519PublicKey.from_public_bytes(
point.tobytes()
)
return public_key, data
def load_private(
self, data: memoryview, pubfields
) -> typing.Tuple[ed25519.Ed25519PrivateKey, memoryview]:
"""Make Ed25519 private key from data."""
(point,), data = self.get_public(data)
keypair, data = _get_sshstr(data)
secret = keypair[:32]
point2 = keypair[32:]
if point != point2 or (point,) != pubfields:
raise ValueError("Corrupt data: ed25519 field mismatch")
private_key = ed25519.Ed25519PrivateKey.from_private_bytes(secret)
return private_key, data
def encode_public(
self, public_key: ed25519.Ed25519PublicKey, f_pub: _FragList
) -> None:
"""Write Ed25519 public key"""
raw_public_key = public_key.public_bytes(
Encoding.Raw, PublicFormat.Raw
)
f_pub.put_sshstr(raw_public_key)
def encode_private(
self, private_key: ed25519.Ed25519PrivateKey, f_priv: _FragList
) -> None:
"""Write Ed25519 private key"""
public_key = private_key.public_key()
raw_private_key = private_key.private_bytes(
Encoding.Raw, PrivateFormat.Raw, NoEncryption()
)
raw_public_key = public_key.public_bytes(
Encoding.Raw, PublicFormat.Raw
)
f_keypair = _FragList([raw_private_key, raw_public_key])
self.encode_public(public_key, f_priv)
f_priv.put_sshstr(f_keypair)
_KEY_FORMATS = {
_SSH_RSA: _SSHFormatRSA(),
_SSH_DSA: _SSHFormatDSA(),
_SSH_ED25519: _SSHFormatEd25519(),
_ECDSA_NISTP256: _SSHFormatECDSA(b"nistp256", ec.SECP256R1()),
_ECDSA_NISTP384: _SSHFormatECDSA(b"nistp384", ec.SECP384R1()),
_ECDSA_NISTP521: _SSHFormatECDSA(b"nistp521", ec.SECP521R1()),
}
def _lookup_kformat(key_type: bytes):
"""Return valid format or throw error"""
if not isinstance(key_type, bytes):
key_type = memoryview(key_type).tobytes()
if key_type in _KEY_FORMATS:
return _KEY_FORMATS[key_type]
raise UnsupportedAlgorithm(f"Unsupported key type: {key_type!r}")
_SSH_PRIVATE_KEY_TYPES = typing.Union[
ec.EllipticCurvePrivateKey,
rsa.RSAPrivateKey,
dsa.DSAPrivateKey,
ed25519.Ed25519PrivateKey,
]
def load_ssh_private_key(
data: bytes,
password: typing.Optional[bytes],
backend: typing.Any = None,
) -> _SSH_PRIVATE_KEY_TYPES:
"""Load private key from OpenSSH custom encoding."""
utils._check_byteslike("data", data)
if password is not None:
utils._check_bytes("password", password)
m = _PEM_RC.search(data)
if not m:
raise ValueError("Not OpenSSH private key format")
p1 = m.start(1)
p2 = m.end(1)
data = binascii.a2b_base64(memoryview(data)[p1:p2])
if not data.startswith(_SK_MAGIC):
raise ValueError("Not OpenSSH private key format")
data = memoryview(data)[len(_SK_MAGIC) :]
# parse header
ciphername, data = _get_sshstr(data)
kdfname, data = _get_sshstr(data)
kdfoptions, data = _get_sshstr(data)
nkeys, data = _get_u32(data)
if nkeys != 1:
raise ValueError("Only one key supported")
# load public key data
pubdata, data = _get_sshstr(data)
pub_key_type, pubdata = _get_sshstr(pubdata)
kformat = _lookup_kformat(pub_key_type)
pubfields, pubdata = kformat.get_public(pubdata)
_check_empty(pubdata)
# load secret data
edata, data = _get_sshstr(data)
_check_empty(data)
if (ciphername, kdfname) != (_NONE, _NONE):
ciphername_bytes = ciphername.tobytes()
if ciphername_bytes not in _SSH_CIPHERS:
raise UnsupportedAlgorithm(
f"Unsupported cipher: {ciphername_bytes!r}"
)
if kdfname != _BCRYPT:
raise UnsupportedAlgorithm(f"Unsupported KDF: {kdfname!r}")
blklen = _SSH_CIPHERS[ciphername_bytes][3]
_check_block_size(edata, blklen)
salt, kbuf = _get_sshstr(kdfoptions)
rounds, kbuf = _get_u32(kbuf)
_check_empty(kbuf)
ciph = _init_cipher(ciphername_bytes, password, salt.tobytes(), rounds)
edata = memoryview(ciph.decryptor().update(edata))
else:
blklen = 8
_check_block_size(edata, blklen)
ck1, edata = _get_u32(edata)
ck2, edata = _get_u32(edata)
if ck1 != ck2:
raise ValueError("Corrupt data: broken checksum")
# load per-key struct
key_type, edata = _get_sshstr(edata)
if key_type != pub_key_type:
raise ValueError("Corrupt data: key type mismatch")
private_key, edata = kformat.load_private(edata, pubfields)
comment, edata = _get_sshstr(edata)
# yes, SSH does padding check *after* all other parsing is done.
# need to follow as it writes zero-byte padding too.
if edata != _PADDING[: len(edata)]:
raise ValueError("Corrupt data: invalid padding")
return private_key
def serialize_ssh_private_key(
private_key: _SSH_PRIVATE_KEY_TYPES,
password: typing.Optional[bytes] = None,
) -> bytes:
"""Serialize private key with OpenSSH custom encoding."""
if password is not None:
utils._check_bytes("password", password)
if password and len(password) > _MAX_PASSWORD:
raise ValueError(
"Passwords longer than 72 bytes are not supported by "
"OpenSSH private key format"
)
if isinstance(private_key, ec.EllipticCurvePrivateKey):
key_type = _ecdsa_key_type(private_key.public_key())
elif isinstance(private_key, rsa.RSAPrivateKey):
key_type = _SSH_RSA
elif isinstance(private_key, dsa.DSAPrivateKey):
key_type = _SSH_DSA
elif isinstance(private_key, ed25519.Ed25519PrivateKey):
key_type = _SSH_ED25519
else:
raise ValueError("Unsupported key type")
kformat = _lookup_kformat(key_type)
# setup parameters
f_kdfoptions = _FragList()
if password:
ciphername = _DEFAULT_CIPHER
blklen = _SSH_CIPHERS[ciphername][3]
kdfname = _BCRYPT
rounds = _DEFAULT_ROUNDS
salt = os.urandom(16)
f_kdfoptions.put_sshstr(salt)
f_kdfoptions.put_u32(rounds)
ciph = _init_cipher(ciphername, password, salt, rounds)
else:
ciphername = kdfname = _NONE
blklen = 8
ciph = None
nkeys = 1
checkval = os.urandom(4)
comment = b""
# encode public and private parts together
f_public_key = _FragList()
f_public_key.put_sshstr(key_type)
kformat.encode_public(private_key.public_key(), f_public_key)
f_secrets = _FragList([checkval, checkval])
f_secrets.put_sshstr(key_type)
kformat.encode_private(private_key, f_secrets)
f_secrets.put_sshstr(comment)
f_secrets.put_raw(_PADDING[: blklen - (f_secrets.size() % blklen)])
# top-level structure
f_main = _FragList()
f_main.put_raw(_SK_MAGIC)
f_main.put_sshstr(ciphername)
f_main.put_sshstr(kdfname)
f_main.put_sshstr(f_kdfoptions)
f_main.put_u32(nkeys)
f_main.put_sshstr(f_public_key)
f_main.put_sshstr(f_secrets)
# copy result info bytearray
slen = f_secrets.size()
mlen = f_main.size()
buf = memoryview(bytearray(mlen + blklen))
f_main.render(buf)
ofs = mlen - slen
# encrypt in-place
if ciph is not None:
ciph.encryptor().update_into(buf[ofs:mlen], buf[ofs:])
txt = _ssh_pem_encode(buf[:mlen])
buf[ofs:mlen] = bytearray(slen)
return txt
_SSH_PUBLIC_KEY_TYPES = typing.Union[
ec.EllipticCurvePublicKey,
rsa.RSAPublicKey,
dsa.DSAPublicKey,
ed25519.Ed25519PublicKey,
]
def load_ssh_public_key(
data: bytes, backend: typing.Any = None
) -> _SSH_PUBLIC_KEY_TYPES:
"""Load public key from OpenSSH one-line format."""
utils._check_byteslike("data", data)
m = _SSH_PUBKEY_RC.match(data)
if not m:
raise ValueError("Invalid line format")
key_type = orig_key_type = m.group(1)
key_body = m.group(2)
with_cert = False
if _CERT_SUFFIX == key_type[-len(_CERT_SUFFIX) :]:
with_cert = True
key_type = key_type[: -len(_CERT_SUFFIX)]
kformat = _lookup_kformat(key_type)
try:
rest = memoryview(binascii.a2b_base64(key_body))
except (TypeError, binascii.Error):
raise ValueError("Invalid key format")
inner_key_type, rest = _get_sshstr(rest)
if inner_key_type != orig_key_type:
raise ValueError("Invalid key format")
if with_cert:
nonce, rest = _get_sshstr(rest)
public_key, rest = kformat.load_public(rest)
if with_cert:
serial, rest = _get_u64(rest)
cctype, rest = _get_u32(rest)
key_id, rest = _get_sshstr(rest)
principals, rest = _get_sshstr(rest)
valid_after, rest = _get_u64(rest)
valid_before, rest = _get_u64(rest)
crit_options, rest = _get_sshstr(rest)
extensions, rest = _get_sshstr(rest)
reserved, rest = _get_sshstr(rest)
sig_key, rest = _get_sshstr(rest)
signature, rest = _get_sshstr(rest)
_check_empty(rest)
return public_key
def serialize_ssh_public_key(public_key: _SSH_PUBLIC_KEY_TYPES) -> bytes:
"""One-line public key format for OpenSSH"""
if isinstance(public_key, ec.EllipticCurvePublicKey):
key_type = _ecdsa_key_type(public_key)
elif isinstance(public_key, rsa.RSAPublicKey):
key_type = _SSH_RSA
elif isinstance(public_key, dsa.DSAPublicKey):
key_type = _SSH_DSA
elif isinstance(public_key, ed25519.Ed25519PublicKey):
key_type = _SSH_ED25519
else:
raise ValueError("Unsupported key type")
kformat = _lookup_kformat(key_type)
f_pub = _FragList()
f_pub.put_sshstr(key_type)
kformat.encode_public(public_key, f_pub)
pub = binascii.b2a_base64(f_pub.tobytes()).strip()
return b"".join([key_type, b" ", pub])

View File

@@ -0,0 +1,7 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
class InvalidToken(Exception):
pass

View File

@@ -0,0 +1,92 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import base64
import typing
from urllib.parse import quote, urlencode
from cryptography.hazmat.primitives import constant_time, hmac
from cryptography.hazmat.primitives.hashes import SHA1, SHA256, SHA512
from cryptography.hazmat.primitives.twofactor import InvalidToken
_ALLOWED_HASH_TYPES = typing.Union[SHA1, SHA256, SHA512]
def _generate_uri(
hotp: "HOTP",
type_name: str,
account_name: str,
issuer: typing.Optional[str],
extra_parameters: typing.List[typing.Tuple[str, int]],
) -> str:
parameters = [
("digits", hotp._length),
("secret", base64.b32encode(hotp._key)),
("algorithm", hotp._algorithm.name.upper()),
]
if issuer is not None:
parameters.append(("issuer", issuer))
parameters.extend(extra_parameters)
label = (
f"{quote(issuer)}:{quote(account_name)}"
if issuer
else quote(account_name)
)
return f"otpauth://{type_name}/{label}?{urlencode(parameters)}"
class HOTP:
def __init__(
self,
key: bytes,
length: int,
algorithm: _ALLOWED_HASH_TYPES,
backend: typing.Any = None,
enforce_key_length: bool = True,
) -> None:
if len(key) < 16 and enforce_key_length is True:
raise ValueError("Key length has to be at least 128 bits.")
if not isinstance(length, int):
raise TypeError("Length parameter must be an integer type.")
if length < 6 or length > 8:
raise ValueError("Length of HOTP has to be between 6 to 8.")
if not isinstance(algorithm, (SHA1, SHA256, SHA512)):
raise TypeError("Algorithm must be SHA1, SHA256 or SHA512.")
self._key = key
self._length = length
self._algorithm = algorithm
def generate(self, counter: int) -> bytes:
truncated_value = self._dynamic_truncate(counter)
hotp = truncated_value % (10**self._length)
return "{0:0{1}}".format(hotp, self._length).encode()
def verify(self, hotp: bytes, counter: int) -> None:
if not constant_time.bytes_eq(self.generate(counter), hotp):
raise InvalidToken("Supplied HOTP value does not match.")
def _dynamic_truncate(self, counter: int) -> int:
ctx = hmac.HMAC(self._key, self._algorithm)
ctx.update(counter.to_bytes(length=8, byteorder="big"))
hmac_value = ctx.finalize()
offset = hmac_value[len(hmac_value) - 1] & 0b1111
p = hmac_value[offset : offset + 4]
return int.from_bytes(p, byteorder="big") & 0x7FFFFFFF
def get_provisioning_uri(
self, account_name: str, counter: int, issuer: typing.Optional[str]
) -> str:
return _generate_uri(
self, "hotp", account_name, issuer, [("counter", int(counter))]
)

View File

@@ -0,0 +1,48 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography.hazmat.primitives import constant_time
from cryptography.hazmat.primitives.twofactor import InvalidToken
from cryptography.hazmat.primitives.twofactor.hotp import (
HOTP,
_ALLOWED_HASH_TYPES,
_generate_uri,
)
class TOTP:
def __init__(
self,
key: bytes,
length: int,
algorithm: _ALLOWED_HASH_TYPES,
time_step: int,
backend: typing.Any = None,
enforce_key_length: bool = True,
):
self._time_step = time_step
self._hotp = HOTP(
key, length, algorithm, enforce_key_length=enforce_key_length
)
def generate(self, time: typing.Union[int, float]) -> bytes:
counter = int(time / self._time_step)
return self._hotp.generate(counter)
def verify(self, totp: bytes, time: int) -> None:
if not constant_time.bytes_eq(self.generate(time), totp):
raise InvalidToken("Supplied TOTP value does not match.")
def get_provisioning_uri(
self, account_name: str, issuer: typing.Optional[str]
) -> str:
return _generate_uri(
self._hotp,
"totp",
account_name,
issuer,
[("period", int(self._time_step))],
)